1

Credit Risk and Dynamic Capital Structure Choice

Thomas Dangl¹

Josef Zechner¹

¹ University of Vienna

The second author gratefully acknowledges the financial support through a grant from the Austrian Central Bank 's (OeNB) Jubiläumsfonds.

Motivation

- Increasing importance of measuring and managing credit risk
 - Basel II: capital standards based on internal models
 - Important input for risk adjusted capital allocation and RAROC calculations
- Shortcomings of existing credit risk models: borrowers' debt levels are assumed to be constant or to change non-stochastically.
- But: borrowers' capital structure choices are dynamic. Firms adjust leverage over time.
- This may have significant influence on credit risk.

Questions addressed:

- How can firms' dynamic capital structure choices be integrated in a credit risk model?
- What is the effect of intertemporal capital structure choices on
 - Credit spreads of corporate debt
 - Estimated distances to default
 - Expected default frequencies
 - Credit Value-at-Risk

Major findings:

- Firms' dynamic capital structure adjustments have significant effects on credit risk
- The dynamics of capital structure adjustments
 - generally increase fair credit spreads and the expected default frequencies
 - Imply a non-monotonic relationship between distance to default and expected default frequencies.
 - When using historic data to map distance to default estimates into expected default frequencies one should separate the sample according to
 - Volatilities
 - Effective corporate tax rates
 - Estimated bankruptcy costs.
 - Expected firm growth
 - Existing bond indentures

Relevant literature

- Literature on pricing of risky corporate bonds: Without recapitalization:
 - Merton (JF 74)
 - Leland (JF 94, JF 96)
 - Longstaff, Schwartz (JF 95)
 - Duffie, Lando (Econ. forthc.)
 - Jarrow, Turnbull (JF 95)

With recapitalization:

- Fischer, Heinkel, Zechner (JF 89)
- Anderson, Sundaresan (RFS 96)
- Leland (JF 98)
- Christensen et al (working paper 00)

Option-based credit risk models (1)

- Weakness of CreditMetrics/CreditVaR I: Transition probabilities are based on historical default frequencies and rating migration.
- Assumes that all firms in a rating class have the same default probability.
- Assumes basically that future default rates equal historical averages.
- \rightarrow Backward looking.

Option-based credit risk models (2)

- KMV approach: Is firmspecific.
- Recognizes that credit risk is due to stochastic changes in the asset value of the debtor.

Source: Crouhy et al., JBF 2000

Option-based credit risk models (3)

- How to estimate firm asset value, V_A , and firm volatility, σ_A ?
- For traded firms we can observe the value of equity and its standard deviation, $V_{\rm E,}$ and $\sigma_{\rm E}$
- But equity can be seen as a contingent claim on the value of the firm's assets:

 $V_{E} = f(V_{A}, \sigma_{A}, B, i, r)$ $\sigma_{E} = g(V_{A}, \sigma_{A}, B, i, r)$

- Where B, i, and r denote the face value of debt, the coupon rate and the riskless rate of interest, respectively.
- Since B, i, r, $V_{\rm E}$ and $\sigma_{\rm E}$ are observable, one can back out $V_{\rm A}$ and $\sigma_{\rm A}$

Option-based credit risk models (4)

- Calculation of the distance to default (DD):
- B_s = face value of short-term debt
- B_1 = face value of long-term debt
- Default point= $B_s + B_l/2$

$$DD = \frac{E[V_T] - (B_s + 0.5B_l)}{\sigma_A}$$

Option-based credit risk models (5)

- From the DD one can calculate theoretical expected default frequencies: E.g.
 DD=2,33→ theoretical default frequency = 1%.
- KMV: maps historical DDs to actual defaults for a given risk horizon:

Source: Crouhy et al., JBF 2000

Option-based credit risk models (6)

- Main observations:
 - EDF do not converge to zero as implied by DD
 - KMV approach: does not take dynamics of borrowers' financial decisions into account
 - In reality firms may issue additional debt or reduce debt before the risk horizon
 - Firms financing decisions will depend on the development of V_A .

Option-based credit risk models (7)

What are the implications of these dynamics on credit risk?

The model (1)

Notation

- c_t a firm's instantaneous free cash flow after corporate tax
- c_t follows the process: $\frac{dc_t}{c_t} = \mu \, dt + \sigma \, dW$
- μ expected rate of change of c_t
- σ risk (standard deviation) of changes in c_t
- dW increment to a standard Wiener process

The model (2)

- Define the firm's inverse leverage, y_t , as $y_t = \frac{\frac{c_t}{r(1 - \tau_p) - \hat{\mu}}}{B} \Rightarrow \frac{dy_t}{y_t} = \mu dt + \sigma dW$
- $\hat{\mu}$ =risk adjusted drift of the cash flow process
- B=face value of debt
- r (1- τ_p).....interest rate of a riskfree asset, after personal tax

The model (3)

- The value of a firm's debt and equity are contingent claims on the inverse leverage, y and the face value of debt, B: E = E(y, B), D = D(y, B)
- These claims must follow the differential equations:

$$\frac{1}{2}\sigma^{2}y^{2}D_{yy} + \hat{\mu}yD_{y} - r(1 - \tau_{P})D + (1 - \tau_{P})iB = 0$$

$$\frac{1}{2}\sigma^{2}y^{2}E_{yy} + \hat{\mu}yE_{y} - r(1 - \tau_{P})E - (1 - \tau_{C})iB + c = 0$$

• where i denotes the coupon rate and τ_c is the corporate tax rate.

The model (4)

• These differential equations have the following solutions:

$$E(y,B) = B E_1 y^{m1} + B E_2 y^{m2} - \frac{(1 - \tau_C)i}{(1 - \tau_P)r} B + yB$$
$$D(y,B) = B D_1 y^{m1} + B D_2 y^{m2} + \frac{i}{r} B$$

$$m_{1/2} = \frac{1}{2} - \frac{\hat{\mu}}{\sigma^2} \pm \sqrt{\left(\frac{1}{2} - \frac{\hat{\mu}}{\sigma^2}\right)^2 + \frac{2r(1 - \tau_p)}{\sigma^2}}$$

Dynamic leverage adjustments

•If the leverage ratio 1/y reaches a lower critical value, $1/\overline{y}$, then the firm repurchases existing debt at B $(1+\lambda)$ and issues additional debt.

•If the leverage ratio 1/y reaches an upper critical value, $1/\underline{y}$ then default occurs and the debtholders receive the firm's assets after paying proportional bankruptcy costs g.

•When a firm issues debt, then it must pay transactions costs k, proportional to the new face value of debt.

Typical path for y with recapitalization

Boundary conditions

$$E(\underline{y}, B) = 0$$

$$E(\overline{y}, B) = [E(y_0^*, B\frac{\overline{y}}{y_0^*}) + B\frac{\overline{y}}{y_0^*}(1-k)] - (1+\lambda)B$$

$$D(\underline{y}, B) = [E(y_0^*, B\frac{\overline{y}}{y_0^*}) + B\frac{\overline{y}}{y_0^*}(1-k)](1-g)$$

$$D(\overline{y}, B) = B(1+\lambda)$$

Issue at par condition:

•Choose i such that:

$$D(y_0^*,B)=B$$

Austrian Workshop on Credit Risk Management

Boundary conditions no recap.

•The model can also be solved for the case where recapitalizations are not allowed.

•The only differences are the boundary conditions.

$$\lim_{y \to \infty} E(y, B) = -\frac{(1 - \tau_C)i}{(1 - \tau_P)r}B + yB$$
$$\lim_{y \to \infty} D(y, B) = \frac{i}{r}B$$

Endogenous bankruptcy

When y can be chosen by the equityholders, the following "low contact" or "smooth pasting" condition must hold (Merton 73): $E_y(y) = 0$

Austrian Workshop on Credit Risk Management

Debt value as a function of leverage

Equity value as a function of leverage

Numerical results (1)

base case parameters	recapitalization	no recapitalization
r = 5%	1/y _o =58%	1/y _o =70%
$ au_{\rm p} = 35\%$ $ au_{\rm c} = 50\%$	1/ <u>y</u> =208%	1/y=205%
$\sigma_{\rm v}^2 = 5\%$	1/y=39%	$1/\bar{y} = 0\%$
k=1%	i(y _o)=7.7%	i(y _o)=7.4%
g=25%		

Numerical results (2)

σ_{y}^{2}	$1/y_0(\mathbf{R})$	i*(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_0)$	Δi [*]
0.05	58%	7.7%	70%	7.4%	-12%	30bp
0.04	60.6%	7.3%	71.8%	7.06%	-11.2%	24bp
0.02	67.9%	6.35%	77.9%	6.23%	-10%	12bp
$ au_{ ext{c-}} au_{ ext{p}}$	$1/y_0(\mathbf{R})$	i *(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_o)$	Δi [*]
0.15	58%	7.7%	70%	7.4%	-12%	30bp
0.11	45%	7.75%	56%	7.44%	-11%	31bp
0.05	22%	5.9%	30%	5.9%	-8%	~0bp

Numerical results (3)

k	$1/y_0(\mathbf{R})$	i *(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_o)$	Δi^*
1%	58.6%	7.7%	70%	7.4%	-11.4%	30bp
2%	58%	7.57%	68%	7.35%	-10%	22bp
4%	55.5%	7.26%	65%	7.18%	-9.5%	8bp
g	$1/y_0(\mathbf{R})$	i *(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_o)$	Δi^*
20%	65%	8.05%	75.8%	7.62%	-10.8%	43bp
25%	58.6%	7.7%	70%	7.4%	-11.4%	30bp
30%	53.6%	7.53	65%	7.3%	-11.4%	23bp

Numerical results (4)

Û	$1/y_0(\mathbf{R})$	i *(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_0)$	Δi^*
-2%	54.7%	8.56%	66.7%	8.39%	-12%	17bp
0%	58.6%	7.70%	70%	7.4%	-11.4%	30bp
2%	74%	7.04%	74%	6.67%	~0%	37bp
λ	$1/y_0(\mathbf{R})$	i *(R)	$1/y_0(NR)$	i*(NR)	$\Delta(1/y_0)$	Δi^*
0%	58.6%	7.70%	70%	7.4%	-11.4%	30bp
5%	61.5%	7.40%	70%	7.4%	-8.5%	0bp
10%	63.8%	7.28%	70%	7.4%	-6.2%	-12bp

Summary

- Recapitalization decreases the optimal initial leverage ratio.
- Recapitalization generally increases credit spreads.
- These effects are stronger for high-risk, high corporate tax and high-growth firms and less pronounced for firms with high costs of recapitalization and high bankruptcy costs.

Model risk

- Previous results assume that y and $\sigma_{\rm v}$ are observable.
- In practice: E and $\sigma_{\rm E}$ are observable and y and $\sigma_{\rm y}$ must be inferred from the valuation model.
- What is the error due to using a static (=Merton type) valuation model rather than a model allowing for capital structure adjustments?

Numerical results: Model risk (1)

- What is the effect of using the "wrong" Merton-type no-recap model?
- Observe E and $\sigma_{E;}$ back out y and $\sigma_{y;}$ calculate the fair credit spread:

σ^2_y	i [*] (recap)	i [*] (no recap)	Δi^*
0.02	6.35%	6.04%	31bp
0.04	7.30%	6.73%	43bp
0.06	8.14%	7.34%	60bp
0.08	8.85%	7.85%	100bp

Numerical results: Model risk (2)

- What is the effect of using the "wrong" Merton-type no-recap model?
- Observe E and $\sigma_{E;}$ back out y and $\sigma_{y;}$ calculate the fair credit spread:

λ (=call premium)	i [*] (recap)	i [*] (no recap)	Δi^*
premum)			
0%	7,75%	7,07%	71bp
5%	7,40%	7,06%	34bp
10%	7,28%	7,10%	18bp
25%	7,22%	7,20%	2bp

Numerical results: Model risk (3)

- What is the effect of using the "wrong" Merton-type no-recap model?
- Observe E and $\sigma_{E;}$ back out y and $\sigma_{y;}$ calculate the fair credit spread:

$ au_{ m c}$ - $ au_{ m p}$	i [*] (recap)	i [*] (no recap)	Δi^*
15%	7,75%	7,07%	71bp
11%	7.03%	6.92%	11bp
5%	5.93%	5.97%	-4bp

Summary

- Generally, using a ,,static" option pricing model to infer asset risk leads to unerestimation of fair credit spreads.
- This underestimation is
 - more severe for high-risk firms and for firms with high effective corporate tax rates
 - less severe for firms with high costs of recapitalization.

Numerical results: Expected default frequencies

- Without recapitalizations: theoretical expected default probabilities (TEDF) converge to zero with DD.
- With recapitalizations, TEDF are non-monotone in DD.

Austrian Workshop on Credit Risk Management

Numerical results: Expected default frequencies

- Expected default frequency and frequency of a recapitalization with subsequent default:
- For large DD, the remaining default risk is only due to corporate leverage changes.

Austrian Workshop on Credit Risk Management

DD and Expected default frequencies

• The graph below displays the understimation of expected default probabilities for various risk levels.

DD and Expected default frequencies

• The graph below displays the understimation of expected default probabilities for various expected cash flow growth rates.

Austrian Workshop on Credit Risk Management

Conclusions (1)

- Capital structure dynamics have important effect on credit risk.
- Traditional DD measure is not a sufficient statistic for true credit risk.
- Mapping from DD into EDF is u-shaped.
- Capital structure dynamics may explain the slow convergence of empirical EDF's to zero.

Conclusions (2)

- Estimating the empirical relationship between DD and expected default frequencies requires conditioning on:
 - firms' volatilities,
 - expected growth,
 - restrictions in existing bond indentures
 - firms' effective corporate tax rates.

Possible extensions

- Consideration of alternative bankruptcy criteria
- Empirical tests
- Allow for multiple debt issues
- Modelling other motives for optimal capital structure (agency considerations etc.)