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Overview

- Multiple obligors ( upto 100.000 or more)

- Losses caused by defaults

Two main models

- Static one period model, i.e. only defaults in

one year.

Risk Management

Risk Capital Allocation

Pricing/Valuation of Collaterized Loan/Bond

Obligations, ABS/CMBS and their first loss

positions.

- Modeling the default times, Pricing of Bas-

ket Credit Derivatives and also CLO structures

and tranches.



Basic Model

Random variable describing defaults:

L =
m∑

i=1

li1Di

m = # of counterparties

Di = Default of counterparty

li = Loss in the event of default

= Exposure * Loss Given Default

The exposure is viewed as a loan equivalent

exposure, if the transaction with a counter-

party is a traded product (Average Expected

Exposure)



Random Variable if credit migration is also con-

sidered:

L =
m∑

i=1

k∑
r=1

lri1Dr
i

k is the number of rating classes and lri is the

loss if counterparty i migrates from is rating

class today r(i) to rating class r. Assuming a

continuous rating r ∈ R the general formula is

L =
m∑

i=1

l
ri(ω)
i ,

where ri(ω) is the random rating of counter-

party i at time 1.

More general for each time t, we have

Lt(ω) =
m∑

i=1

li(t, ω, rt,i(ω))

Here rt,i(ω) is the rating of counterparty i at

time t and li(t, ω, r) is the loss of counterparty

i at time t if i is in rating r.



Joint Default Probabilities

The determination of the probability of joint

defaults of each pair of obligors is important.

Single Defaults are derived from relative fre-

quency of defaults in uniform segments.

P [Di] =
# Defaulted members in Segment A

All members in Segment A

Joint Defaults?

P [CP in Seg A defaults,CP in Seg B defaults]

=
#?

#???

For joint defaults a model is needed!



Multivariate Ability to Pay

(A(i)
1 )i=1,..,m =”Ability to pay” at year one of

the vector of obligors.

Default in one year is then be defined by the

event

Di = {A(i)
1 < C(i)},

where C(i) is a calibrated ”Default Point”.

Remark: If the counterparty is an exchange traded firm,

then A(i)
t =Value of firm’s assets= F (E, L, t) where

E = (Et)t≥0 value of equities
L = (Lt)t≤0 Liability Process .

The function F may be derived by modeling the equity

as a contingent claim on the firm ( Call option as in

Merton ’74) or vice versa. ”Default Point”= Function

of Liabilities.



Joint Defaults if A is normal

JDPij

:= P

[
A

(i)
1 < C(i), A

(j)
1 < C(j)

]

=

N−1(P [Di])∫
−∞

N−1(P [Dj])∫
−∞

1

2π
√

(1− r2ij)

exp

(
1

2(1− rij)
(x2

1 + x2
2 − 2rijx1x2)

)
dx1dx2

Default correlation

ρij = corr(1
{A(i)

1 <C(i)}
, 1
{A(j)

1 <C(j)}
)

=
JDPij − P [Di]P [Dj]√

P [Di](1− P [Di])P [Dj](1− P [Dj])



Loss Distribution
Uniform Portfolio

pi = p, li = 1 ∀ i = 1, .., m and rij = r ∀ i, j =

1, .., m, i 6= j. Zerlege

W i
t =

√
rB0

t +
√

1− rBi
t,

where Bj, j = 0, .., m are independent Brownian

Motions.

Conditioning on the systematic factor B0
1 yields



for the percentage portfolio loss: P [L = k
m] =(m

k

)
P
[
A1

1 < C1, .., Ak
1 < Ck,

Ak+1
1 > Ck+1, .., Am

1 > Cm

]
=
(m

k

) ∫ ∞
−∞

P
[
Ai

1 < Ci, i = 1, .., k,

A
j
1 > Cj, j = k + 1, .., m

∣∣∣B0
1 = x

]
P [B0

1 ∈ dx]

=
(m

k

) ∫
P

Bi
1 <

ln Ci
Ai

0
− (µi − 1

2σ2
i )− σi

√
rx√

(1− r) · σi

,

i = 1, .., k,

Bi
1 >

ln Ci
Ai

0
− (µi − 1

2σ2
i )− σi

√
ρx√

(1− r)σi

, i = k + 1, .., m


P [B0

1 ∈ dx]

=
(m

k

) ∫ ∞
−∞

Φ

(
−

1√
1− r

(c +
√

rx)

)k

·
(
1−Φ

(
−

1√
1− r

(c +
√

ρx)

))m−k

Φ(dx).



In the last equation

c = ci =
1

σi
(ln(Ai

0/Ci) + µi −
1

2
σ2

i ),

since ci = c = Φ−1(p).

Limiting distribution m →∞

Fm(θ)

= P [percentage loss < θ]

=
[mθ]∑
k=0

P [percentage loss = k/m]

=
[mθ]∑
k=0

(m
k

) ∫ ∞
−∞

Φ

(
−

1√
1− r

(c +
√

rx)

)k

(
1−Φ

(
−

1√
1− r

(c +
√

rx)

))m−k

Φ(dx)



Substitution

s = s(x) = Φ

(
1√

1− r
·
(
Φ−1(p)−

√
r · x

))
yields

Fm(θ) =
[mθ]∑
k=0

(m
k

) ∫ 1

0
sk(1− s)m−k

dΦ

(
1
√

r
· (
√

1− r ·Φ−1(s)−Φ−1(p))

)
.

Because of the law of large numbers

[mθ]∑
k=0

(m
k

)
sk(1− s)m−k → 1(0,θ](s),0 < s < 1

we obtain the density of the limiting distribu-

tion
√

1− r
√

r
exp

[
−

1

2r
· (
√

1− r ·Φ−1(s)

−Φ−1(p))2 +
1

2
(Φ−1(s))2

]
.



Applications

Basket Credit Derivatives / Synthetic CDO’s

Basic Concepts: ”Sell” the risk of a subport-

folio to the investors.

In mathematical terms: The holder of a tranch,

that covers the losses between e.g. α% and

β% might have - depending on the contract

specification - the (percentage) expected loss

( ∼ spread)

s =
∫ (x− α)+ ∧ (β − α)

(β − α)
fp,ρ(x)dx.

Since the overall expected loss (in percentage)

is p we can obtain ρ.

Extending the above argument to portfolio con-

sisting of many uniform portfolios we might



try to derive implied correlations from a set of

equations

si =
∫ (x− αi)

+ ∧ (αi+1 − αi)

(αi+1 − αi)
fp1,.,pk,ρ1,.,ρq(x)dx,

i = 1, .., l. Here si is the spread of tranch i with

boundaries αi, αi+1.



Economic Capital

Economic Capital is usually defined to be a

quantile of the distribution of L minus the mean

of L.

EC(α) = qα(L)− E[L].

Assuming that the returns on a single asset in

the portfolio are joint normal distributed, the

portfolio return L is also normal. Then the

economic capital is also given by multiples of

the standard deviation. These multipliers CM

are also called “Capital Multipliers”.

EC(α) = σ(L) ∗ CM(α).



Alternative Capital Definition

In light of the non-normality another Capital

Definition should be considered. Economic Cap-

ital viewed as a Risk Measures should also sat-

isfy the Coherency Axioms formulated by Artzner

et al. A prominent example of a coherent risk

measure is similar to a kind of lower partial

moment

C(L) := E[L|L > K],

where K is a threshold, used to define ”Large

Losses”, e.g.

K = qα′(L), then C(L) is coherent.

K =fraction of equity capital

K = experienced large losses



Contributory Economic Capital

This capital definition yields also a new defini-

tion of contributory economic capital

Ci(L) := E[1Di
|L > K].

Average contribution of counterparty i to the

portfolio loss, when large losses occur.

Theorem:

• C(L) =
∑m

i=1 liCi

• If K /∈ {
∑n

k=1 lik|{i1, .., in} ⊂ {1, .., m}} then

Ci =
∂C(L)

∂+li

• Ci is a coherent risk measure on the prob-

ability space generated by the portfolio.



Remarks

• Ci < 1

• These figures are a by-product if the loss

distribution is generated by a Monte-Carlo-

Simulation.

• First statistics of the distribution of Li given

L > K. Other statistics like variance could

be useful. ( Conditional variance is proba-

bly not coherent.)

• Definition reflects a causality relation. If

counterparty i adds more to the overall loss

than counterparty j in bad situations for the

bank, also business with i should be more

costly ( asuming stand alone risk charac-

teristics are the same).



• A function C is a coherent risk measure iff

C is a generalized scenario, i.e. there is a

set of probability measures Q such that

C(X) = sup{EQ[X]|Q ∈ Q}.

Since L, Li ≥ 0 the capital allocation rule

carries over to all coherent risk measures.



Simulation Study

Portfolio of 40 counterparties with 5 year de-

fault probabilities. New capital allocation rule

based on shortfall risk changes the order of

capital consumption.

In the classical approach the contributory eco-

nomic capital for transaction i is defined by

γi = (qα(L)− E[L])
cov(li1Di

, L)

σ2(L)



Default Times

Given a default curve pi(t), t > 0 for each obligor,

where pi is a strictly increasing function (0,∞) →
[0,1].

Associated random variable T (i) is the default

time of obligor i:

P [T (i) ≤ t] = pi(t).

Goals: Construct T (i) as a simple first hitting

time of a process Y , the ability to pay process.

Condition (*)

∃Y (i) = (Y (i)
s )s≥0, C ∈ R,

s.t. with T
C,Y (i) := inf{s|Y (i)

s ≤ C}
P [T

C,Y (i) ≤ t] = pi(t)



Correlation

Condition (**): Given a set of one year joint

default probabilities (pij)i,j=1,..,m we have

P [T
C,Y (i) ≤ 1, T

C,Y (j) ≤ 1] = pij,

∀i, j = 1, .., m, i 6= j.

Ansatz: Try to find a transformation Y =

F (W ) of a Brownian motion W with corre-

lation matrix (ρij)i,j=1,..,m such that (*) and

(**) are satisfied.



Theorem. There exist a correlation matrix R

and a vector of time changes T i
t such that Y

defined by Y i
t = W i

Tt
, where W is a Brown-

ian motion with covariance matrix R, satisfies
conditions (*) and (**).

Proof: For a one-dimensional Brownian mo-
tion B the function

P [inf
s≤t

Bs ≤ C] = f̃(t, C)

is explicitly known, cf. Karatzas/Shreve:

f̃(t, C) = 2N(C/
√

t).

Therefore for each Y i
t = WT i

t
with a determin-

istic time change Tt we have

P [inf
s≤t

Y i
s ≤ C] = f̃(T i

t , C).

Hence a time change defined by(
N−1(pi(t)/2)

b

)−2

=: T i
t

yields condition (*) for each i.



For a given correlation ρij the joint default

probability of two time changed Brownian mo-

tions equals

P [TY i,C ≥ 1, TY i,C ≥ 1]

=
∫ ∞
C

∫ ∞
C

f̌
(
x1, x2, ρij,min(T i

1, T
j
1)
)

(
1− 2N

(
C − x2√

∆

))
dx1dx2,

where f̌(x1, x2, ρij, t) is the corresponding den-

sity without time change at time t ( as in

the paper of Zhou on default correlation) and

∆ = max(T i
1, T

j
1)−min(T i

1, T
j
1). �



Remarks

• A transformation of Brownian motion based

on deterministic time dependent volatility

Y =
∫

σdW can also be written as a time

change of a Brownian motion B. Then

condition (*) can be met, however the cor-

relation structure of B and W are different.

Therefore the solution to condition (**)

seems open.

• Open Problem:

Find a non-random drift g(i) such that with

the definition

Y i
t = W i

t −
∫ t

0
gi
sds

conditions (*) and (**) can be met.



Estimation of Correlation

• If Ability-to-Pay=Asset-Value and Asset-

Value can be derived from equity time se-

ries and balance sheet information, the cor-

relation can be obtained from time series.

• These firms provide factor model where

non-listed firms can be embedded. Usually

factor describing the systematic risk in the

Ability-to-Pay is derived from balance sheet

information (Sectors in which the company

generates profits). It remains to determine

the R-squared of the firms specific system-

atic factor.

• Large uniform retail portfolios

As above, p=average default probability, ρ

average asset correlation:



• General Approach:

Use size of portfolios and consider losses

Li, i = 1, ..., m in large subportfolios Si. Try

to minimize KS-statistic of(
F

ρ
L̂1,..,L̂i

(L̂i)
)

i=1,..,m

or other statistics of the conditional dis-

tribution of losses in portfolio i given the

losses in other portfolios.

Not yet implemented!



Validation of credit risk models

Default probabilities

P [Di] = Default Probabilities

Determination

1. Step Rating

e.g. from 1=”AAA”, best creditworthiness

to 10=”C” worst

2. Step Calibration

P [Di] =
#Defaults in Rating j(i)

#in Rating j(i)



Challenge: Validation of default probability, usu-

ally they are assumed to be independent. But

there are Dependent defaults.

Confidence bound for estimator depends on

correlation!

But final objective is validation of EC-quota!



Validation

Is the EC quota correct? If the confidence level

equals 99-98%, EC is only breeched in 1 out

of 5000 years. You can’t test this statistically!

Possible Approaches

1. Analysis in many subportfolios, i.e. Cross-

Sectional Data instead of time series

Problem: Subportfolios are correlated

Try to identify portfolios which are almost un-

correlated



More ideas.

Randomized Subportfolios to make them inde-
pendent?

2. Parametric Bootstrap.

Generate under H0 many realisations of the
”spatial” distribution of losses.

- Are these realisations ”in the neighborhood”
to the observed one?

- ”Near” in the sense of point process distri-
butions?

Statistical Tests about rejection of H0, error
probabilities

3. Parameter optimization (especially implied
correlations), model selection, model valida-
tion with (non-parametric) boostrap techniques
or resampling of dependent data?



Literature:

Efron/Tibshirani Chapter 17: Cross-Validation

and other estimates of prediction error.

Davison/Hinkley Bootstrap Methods and their

Application

Chapter 8, Complex Dependence (incl. Spatial

processes).


