Credit Risk Modelling and Analysis in Practice

Abbreviated Handout Version

DI Walter MUSSIL

Bank Austria AG

walter.mussil@ba-ca.com

CRM 2001

Vienna, February 1st, 2001

W.Mussil / CRM 2001 - February 1st, 2001

Overview

- Basic concepts
- Level 1: The rating model
- Level 2: The portfolio model
 - Sidestep: Using simulation models
 - Parameter effects
- Portfolio management

Basic concepts: Risk vs. Return

TO APPLY RAROC ACROSS THE CREDIT BOOK WE NEED TO KNOW THE PARAMETERS

Level 1 - The rating model: Major steps

- 1) Analysis of portfolio / Requirements
- 2) Building of model
- 3) Implementation / Institutionalization

Level 1 - The rating model: Requirements

- Analysis of portfolio structure

		Region				
		Domestic	Developed Markets	Emerging Markets	Eastern Europe	
Client	Private	X			X	
	SME	X			X	
	Corporates	X	X	X	X	
	Leveraged	X				
	Financials	X				
	Project & R. Estate	X				
	Countries	X				

- Determine level of detail / seperate modelling

Level 1 - The rating model: Building of model

The short way: calibrating the old model

Level 1 - The rating model: Building of model

But: Usually large overlaps can be observed

Level 1 - The rating model: Building of model

Building a new model

Level 1 - The rating model: Building process

The necessary steps for building a statistical rating model are:

Level 1 - The rating model: Theory

 $\begin{array}{l} P_{k} = f_{k}\left(R_{k}\right) \forall k \in [1..K] & \text{- Determine transformation function for each ratio} \\ \text{with} \quad R_{k} & \text{financial / economic ratio} \\ K & \text{total number of ratios} \end{array}$ $P = \widetilde{f}\left(P_{k}\right) & \text{- Find optimal parametrization for the sample space} \\ P_{i} = f_{P}\left(P_{i}\right) & \text{- Calibrate to get default probabilities for each} \\ \end{array}$

Level 1-The rating model: Practice

Level 1 - The rating model: Building process

The rating system should be the result of a combination of statistical analysis and expert discussions ...

... SINCE THERE EXISTS LIMITED DATA, EXPERT DISCUSSIONS PLAY AN ESSENTIAL ROLE

Level 1 - The rating model: Time consumption

Building several rating models has shown a common profile:

Level 1 - The rating model: Implementation

A) Building of IT-application:

- centralized data warehouse in uniform format
- modular system
- usage throughout the whole bank
- B) Definition of "Rating Rules" (guideline)
- C) Installation of rating-process
- Time Horizon: 7 9 months

Level 2 - The portfolio model: Major steps

- 1) Specification of portfolio-model
- 2) Data collection
- 3) Parametrization
- 4) Prototype for reconciliation and structuring
- 5) Implementation and reporting

Level 2 - The portfolio model: Time consumption

Data collection and parametrization are the most important steps

Level 2 - The portfolio model: The process

Level 2 - The portfolio model: Theory part 1

- Start with the unconditional default probability of obligor *i* ...

$$p_i(t) = \Pr\{t_i \le t\}$$
, with t_i time of default

... and transform it into an unconditional credit quality

$$\boldsymbol{c}_i = \Phi^{-1}(\boldsymbol{p}_i)$$

- A change in orthogonal economic factor returns m_j results in a change in credit quality ...

$$\boldsymbol{d}(t \mid \boldsymbol{m}(t)) = \sum_{j=1}^{M} \boldsymbol{b}_{ij} \cdot \boldsymbol{m}_{j}(t) + \boldsymbol{s}_{i} \cdot \boldsymbol{e}_{i} \quad ; \boldsymbol{m}, \boldsymbol{e} \sim iid \ N[0,1]$$
$$\boldsymbol{s}_{i} = \sqrt{1 - \sum \boldsymbol{b}_{ij}^{2}}$$

... which leads to a conditional default probability for each scenario

$$p_i(t \mid m(t)) = \Pr\{t_i \le t \mid m(t)\} = \Phi\left(\frac{c_i - \sum b_i \cdot m(t)}{s_i}\right)$$

Level 2 - The portfolio model: Clustering

- Grouping companies into clusters reduces complexity dramatically

Level 2 - The portfolio model: Macroeconomic factors

Clusters responded well to the macro-economy

Level 2 - The portfolio model: Theory part 2

- After modelling default probabilities we need to focus on exposure

$$LGD_{i}(m(t)) = X_{i}(m(t)) \cdot \left[1 - \mathbf{h}_{i}(m(t))\right]$$

- with X_i conditional exposure of obligor *i* h_i conditional recovery rate
- Now we can calculate conditional loss distributions for each obligor resp. for the whole portfolio

$$Pr\{x < Loss_{i} < y \mid m\} = L_{i|m}(y) - L_{i|m}(x)$$
$$Pr\{x < Loss_{PF} < y \mid m\} = L_{PF|m}(y) - L_{PF|m}(x)$$

Full monte carlo simulation leads finally to the portfolio loss distribution

$$\Pr\{x < Loss_{PF} < y\} = \int_{m} \Pr\{x < Loss_{PF} < y \mid m\} dq(m)$$

with $q(m)$ pdf of scenarios

Level 2 - The portfolio model: Simulation Framework

The loss distribution is generated with a Monte-Carlo-Simulation of the underlying macro factors

To determine complete loss distribution:

- Usually calculation of 10.000s scenarios necessary (even with sophisticated sampling techniques)
 - ⇒ compared to analytical solutions a little more time consuming
 - But: Calculation can easily be "distributed"
 - Results are much more transparent
 - Illiquid portfolios can be modelled
 - Much higher flexibility

Using intranet-technology increases speed enormously...

- A Client-Server-Client concept coordinates calculations throughout the whole network

Each scenario leads to a conditional expected and unexpected loss

Level 2 - The portfolio model: Loss Distribution

To determine the discrete loss distribution all scenarios are aggregated

Aggregated Loss Distribution

Level 2 - The portfolio model: Sensitivity Analysis

Dramatic changes in macro-economic factors can result in extremely high losses.

Parameter effects: EDF

Sample calculations help to point out influences of parametrization...

Parameter effects: Correlation vs. stochastic severity

Changes in correlation also have high impact on UL and capital ...

	avg rho asset	UL	AA
-10% rel.chg	17%	0,83%	5,85%
base case	19%	0,88%	6,39%
+10% rel.chg	21%	0,93%	6,93%
high level	50%	2,68%	26,63%
even higher level	80%	4,03%	42,65%

... but modelling volatility of severity has only small effects

σ_{SEV}	UL	AA
0%	0.880%	6.39%
30%	0.882%	6.39%
50%	0.885%	6.41%

Portfolio Management: RAROC I

Analysis of different industry-segments shows us clearly the loss leaders.

Portfolio Management: RAROC II

Risk adjusted profitability looks similar across and within rating classes.

Portfolio Management: Risk contributions

Systematic analysis of risk contributions helps to find concetrations and to optimize the portfolio

ECONOMIC CAPITAL

Portfolio Management: A "real" sample picture

Sample snapshot of BA - credit risk portfolio application

Portfolio Management: Risk concentration

A sample calculation illustrates the impact of concentration on capital requirements

Portfolio Management: Pricing

To reach the same level of RAROC concentration effects need to be considered in pricing

The modelling circle: Possible steps

Concluding remarks

Rating Models

- Usually one year period for complete re-rating
- Risk mitigation / transfer

Portfolio Models

- Homogenity in clusters
- Benchmarks / use of analogues
- Don't trust the stats blindly

And generally...

- New BIZ requires high flexibility in models
- Right balance between theory and practice