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Main aims of this contribution

Part I: Optimal arbitrage free static hedging strategies for
basket options and new measure of lack of comonotonic
or antimonotonic dependence in correlated assets:
Market Implied Comonotonicity Gap (Joint work with
Tai-Ho Wang, building on earlier work by Hobson,
Laurence and Wang).

Part II: Extension to generalized spread options.
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Introducing the GAP

We introduce a quantity called "the Gap", or more precisely "Market Implied
Comonotonicity Gap" (for short: MICG), with the property that:

Gap can be monitored over time and used as a tool in a static (or semi-static)
dispersion trading strategy.

When gap is small ("High correlation") compared to it’s historical values: basket (consider
case of index option first, later in talk spread) is overpriced.

⇒ Sell basket option, buy options on the components.

When gap is big compared to it’s historical values ("Low correlation"): basket is cheap,
undervalued.

⇒ Buy an option on the basket, sell options on the components
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Strategy

This is not an arbitrage strategy:

It carries some risk, but downside risk is

quite small.

It is important to find the right time to enter

into a "Gap Trade" .
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Implied Correlation

We will describe MICG and contrast with another well known
dispersion trading strategy, so called "implied correlation.

Implied correlation is the number ρ such that when ρij

are replaced by ρ gives same implied variance of index:

σ2
I =

n∑

i=1

σ2
i +

∑

i 6=j

σiσjρij =
n∑

i=1

σ2
i + ρ

∑

i6=j

σiσj

Hence,

ρ =

σ2
I −

n∑

i=1
σ2

i

∑

i 6=j

σiσj
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Implied correlation 2

But

σI = σI(K
bask),

so which strikes Ki, i = 1, · · · , n should we use to select σi = σi(Ki), i = 1, · · · , n in the
above formula?
Wide spread practice:

Kbask ATM, then choose Ki ATM

But what if Kbask is out of or in the money? Or even for ATM in what sense is choice of ATM
Ki optimal?

In contrast MICG gives means of selecting optimal strikes.
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A new measure of correlation

Plan: We will recall the definition of comonotonicity and
will illustrate the difference between perfect positive
correlation and co-monotonicity.

We introduce as a measure of lack of comonotonicity of
components in a basket product:

Gap = C −M

C: the market implied comonotonic price
M: true market price
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Comonotonicity

Recall the definition of comonotonicity:

A random vector (X1, X2, · · ·Xn) is said to be co-monotonic if
there exists a uniformly distributed random variable U such
that

U ∼ Uniform(0, 1)

(X1, X2, · · · , Xn)
d
=
(
F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)
)
,

where FXi
(x) is the distribution function of Xi.
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Perfect positive correlation 6= co-monotonicity

Difference between perfect positive correlation and co-mononotonicity. Tchen, Dhaene-Denuit’s
theorem, concerning the relation of linear correlation with comonotonicity:

Theorem 1 If (X1, X2) is a random vector with given margins FX1
, FX2

and let ρ be the Pearson
(i.e., linear, standard) correlation coefficient, then we have

ρ(F−1
X1

(U), F−1
X2

(1 − U)) ≤ ρ(X1, Y1) ≤ ρ(F−1
X1

(U), F−1
X2

(U)),

where U is a uniformly distributed random variable.

In words:

Largest value of the correlation for a random vector (X1, X2) with given marginals is
attained for comonotonic random variables, but is generally not equal to 1 unless they have
a linear dependence with positive slope (X2 = aX1 + b, a > 0).

Minimal value of the correlation for a random vector (X,X2) with given marginals is attained
for antimonotonic random variables, but is generally not equal to −1.
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Does the market offer a comononotonic Index?

The answer of course is no.

But, surprisingly, perhaps, we may synthetically create
an index option that behaves “ as if” the underlying
assets were comonotonic.

This synthetic comononotonic index option can be
created using traded options on the individual
components of the index, with judiciously chosen strikes.
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were comonotonic
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Comonotonic Distribution: purely atomic, with jumps
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How to determineC ?

So, given a basket options with payoff

“

X

wiSi −K
”+

how do we determine the comonotonic price?

ANSWER: If we knew with certainty the marginals FSi
of the individual assets Si in the

basket, the the procedure would be:

First determine the joint probability distribution for the stocks in the basket via

P (S1 ≤ x1, S2 ≤ x2, · · · , Sn ≤ xn)

= CUFréchet
`

FS1
(x1), FS2

(x2), . . . , FSn
(xn)

´

where

CUFréchet(y1, y2, · · · , yn) = min (y1, y2, . . . , yn) upper Fréchet bound
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The Gap II

Second: Determine the density of joint prob. distribution
of the basket via

p(x1, x2, · · · , xn)

=
∂n

∂x1∂x2 · · · ∂xn
[P (S1 ≤ x1, S2 ≤ x2, · · · , Sn ≤ xn)]

Third:

BasketPrice =

∫

<+
n

(
n∑

i=1

Si −K

)+

p(S1, S2, . . . , Sn)dS1 . . . dSn
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Where do marginals come from?

Recall Breeden-Litzenberger theorem (Journal of Finance, 1978):

Theorem 2 Let C(S, t,K, T ) be call prices corresponding at time t and given that the spot
price is at S, for a call option struck at K and expiring at T , assuming a continuum of strikes
is traded.
Then

∂2

∂K2
C(S, t,K, T ) = e−r(T−t)p(S, t,K, T ) where p is the transition probability

⇒ marginal distribution function ofS i.e. FS(s) is therefore known

In reality, the market provides us only with a finite number of strikes for each expiry and for
each stock S = Si, i = 1, · · · , n. So how do we fill in Call price functions for each asset for
all strikes? Answer related (but only very partially explained) by work on distribution free
bounds for one asset, of which we now give a reminder:
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A typical Component Option, Procter& Gamble
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The "Market Implied" co-monotonicity gap

The market only gives us partial information about the marginals through the

prices of traded options with various traded strikes K(i)
1 ,K

(i)
2 , · · · ,K

(i)
J(i)

for stock Si at a

given maturity t.

Let UB be the upper bound for basket option, given only this partial information, then

Market implied comonotonicity Gap = UB − traded Market Price

Fundamental: Given a basket option on n assets, there is a portfolio P of n+ 1 options
on components, such that

UB = Market Price of P

Below we will discuss how to determine the upper bound UB.
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Recent Work on Model Independent Option Bounds

Bertsimas and Popescu, 2003, use a LP approach to derive bounds on assets under a variety of
constraints. Here is one of their results:

Given prices Ci(Ki) of call options with strikes 0 ≤ K1 ≤ .. ≤ Kn on a stock X, the range of all
possible prices for a call option with strike K where K ∈ (Kj ,Kj+1) for some j = 0, · · · , n is
[C−(K), C+(K)] where

C−(K)

= max

„

Cj
K −Kj−1

Kj −Kj−1
+ Cj−1

Kj −K

Kk −Kj−1
,

Cj+1
Kj+2 −K

Kj+2 −Kj+1
+ Cj+2

K −Kj+1

Kj+2 −Kj+1

«

lower bounds

C+(K) =
Kj+1 −K

Kj+1 −Kj
+ Cj+1

K −Kj

Kj+1 −Kj
upper bounds
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Bertsimas-Popescu
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Linear interpolation

slope ∆
(i)
jC(i)(k

(i)
j−1)

C(i)(k
(i)
j )

k
(i)
j−1 k

(i)
j

C
(i)

(k)

The interpolated call price function. ∆
(i)
j gives the modulus of the slope of C

(i)
over (k

(i)
j−1, k

(i)
j ).

This graph provides one of many ways of filling in the missing strikes. But it turns out to be the
fundamental interpolation, in the case of the upper bound.
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Co-monotonic copula & Option Prices

The marginals corresponding to piecewise linear call prices are discontinuous at every strike
price and constant between strike prices.
Because:

∂2C(i)

∂K2
= density

and because our call price functions are piecewise linear between two strikes so

∂2C

∂K2
= 0, Kj

i ≤ K ≤ Kj+1
i

∂2C

∂K2
= δ(Kj

i ) ×
“

change of slope atKj
i

”

,

This is illustrated in following slide:
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Underlying assets have jumps and regions with no mass

for i−th stock
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FS i

(K)

i

marginal
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The interpolated call price function. ∆
(i)
j gives the modulus of the slope of C

(i)
over (k

(i)
j−1, k

(i)
j ).
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Optimizer

Now the market implied co-monotonic optimizer
(S̄1, S̄2, . . . , S̄n) is a random variable which is distributed
like the vector random variable

(

(FM
S1

)−1(U), (FM
S2

)−1(U), . . . , (FM
Sn )−1(U)

)

where FM
Si
, i = 1, · · · , n are the market implied marginals with

point masses at the strikes.

It can be shown (Laurence and Wang (2004, 2005) and
Hobson, Laurence and Wang (2005)) that the market
implied co-monotonic optimizer is a solution of
optimization problem on next slide:
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Optimization - primal

Constrained optimization problem. Determine

sup
µ

∫
(
∑

i

wiSi −K

)+

µ(dS)

subject to
∫

(Si − k
(i)
j )+µ(dS) = C(i)(k

(i)
j ), for i = 1, . . . , n, j = 1, . . . , J (i)

∫

µ(dS) = 1
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Optimization - dual

Dual problem

inf
ν,ψ

n
X

i=1

J(i)
X

j=1

C(i)(k
(i)
j )νji + ψ

subject to

 

X

i

wiSi −K

!+

≤
X

i,j

“

Si − k
(i)
j

”+
νji + ψ (*)

νij ∈ R, for i = 1, . . . , n, j = 1, . . . , J(i)

ψ ∈ R

(*) is the super-replication condition

Here ψ is cash component and νij is number of options with strike kij in hedging portfolio.
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Finite market - Using all traded options

Preliminaries For simplicity of exposition assume all slopes ∂C(i)(u)
∂u

˛

˛

˛

˛

u=k
(i)
j

are

different as i and j vary. Let In = {1, 2, · · · , n} where n is the number of assets.

There is a privileged index î ∈ In such that:

For any model which is consistent with the observed call prices C(i)(Kj), the price B(K)

for the basket option is bounded above by BF (K), where

Case I:
P

i wik
(i)

J(i) > K:

BF (K) =
X

i∈In\î

wiC
(i)
“

k
(i)

j(i)

”

+ wî



(1 − θ∗
î
)C (̂i)

“

K
(̂i)

j(̂i)−1

”

+ θ∗
î
C (̂i)

„

k
(̂i)

j(î)

«ff

θ∗
î

is defined as θ∗
î

=
λ
∗

î
−λ

−

î
(φ∗)

λ
+

î
(φ∗)−λ

−

î
(φ∗)

=
(Kλ

∗

î
/w

î
)−k

(i)

j(î)−1

k
(i)

j(î)
−k

(i)

j(î)−1

, λ
∗
î ∈ [k

(i)

j(̂i)−1
, k

(i)

j(̂i)
].
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Finite market - Result

Case II:
P

i wiKJ(i) ≤ K:

BF (K) =
X

i

wiC
(i)
“

k
(i)

J(i)

”

**********************************************************************************************

Based on experiments with real data, the second case essentially never arises in practice.

Moreover, the upper bound is optimal in the sense that we can find co-monotonic models
which are consistent with the observed call prices and for which the arbitrage-free price for
the basket option is arbitrarily close to BF (K).

So where’s the beef in Case I?

All the beef in fleshing out the estimate in the first case is in determining the special index î
and the indices j(i), i = 1 · · · , n.
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How to find which options to choose?

Possible to show that there is No cash component ψ in the optimal portfolio. So can
consider super-replicating portfolios consisting entirely of options with various strikes (some
of which may have strike zero).

The upper bound is available in quasi-closed form, meaning there is a simple algorithm to
determine the solution, modulo a slope ordering algorithm: Order all slopes of all call price
functions and cycle through.

To get the intuition as to how to proceed, note that if
P

λi = 1 then

 

X

i

wiX
(i)
M −K

!+

≤
X

i

wi

„

X
(i)
M −

λiK

wi

«+

, due to Merton

So that

CB(K) ≤
X

i

wiC
(i) (λiK/wi) .

The λi are arbitrary and so CB(K) ≤ infλi≥0,
P

λi=1

P

i wiC
(i) (λiK/wi) .
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Intuition

We wish to find the infimum of
P

i wiC
(i) (λiK/wi) over choices λi satisfying

λi ≥ 0,
P

λi = 1. Define the Lagrangian

L(λ, φ) =
X

i

wiC
(i) (λiK/wi) + φ

 

X

i

λi − 1

!

.

Objective function is convex but only C0,1, because each piecewise linear call price

functions C(i), is C0,1, ie. ∂C
i

∂K
has a jump at each strike Kj

i , j = 1, ·, ni.

Note that objective functional is separable function of 1-dimensional functions.

Therefore for each fixed Lagrange Multiplier φ, the gradient can point in a cone of different

directions. In the terminology of convex analysis we have φ/βK ∈ ∂̄C(i)(λiK/wi), where ∂̄

is the subdifferential of the function C(i). .
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Illustration Min

i’

S

Slope S

Slope 

+

−

φ

φ

φ− 

+      S
−

< 0

+ S
 + 

> 0

 <  <  − S
−

 Ki

K

−

−

 K
i

at

φ

 φ

unique min 

S
+

φ  −

Kii’

too large     −−−−−>     no min or min for smaller K
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Algorithm

For each φ there is either a unique λ(φ) or an interval [λ−(φ), λ+(φ)].
Essentially:
• [λ(φ)−, λ(φ)+] ∼ [wiK

j
i /K,wiK

j+1
i /K] for some i and j.

• So Algorithm:

Order all the slopes of all call price functions. Ie. if 30 assets and 8 non zero strikes , order
240 slopes.

S1 ≤ S2 ≤ · · · · · · ≤ S240

Now starting with φ = ε << 1 increase φ while monitoring the quantity

Λ(φ) =
X

λ+(φ)

which starts very large for small φ (
 large Kj
i ) and decreases as φ ↑.

The first time Λ(φ) crosses 1. STOP! 7→ Optimal value of φ = φ∗ has been reached.
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Experiment on Real DJX Data: Spot was99.07

We now illustrate the output on real DJX data.
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How good is the Upper Bound? Spot was99.07
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spread options

PART II
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Spread option case

The methodology for basket options can also be applied
to generalized spread options.

The payoff ψ of the generalized spread options

ψ(S1, · · · , Sn) =

(
n∑

i=1

wiSi −K

)+

where the weights wi are constants of arbitrary sign.

Examples contain heating oil crack spread
((42 × [HO] − [CO] −K)+), 3:2:1 crack spread
(
(
42 × 2

3 [UG] + 42 × 1
3 [HO] − [CO] −K

)
)

Note: 1 barrel = 42 gallons
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Antimonotonicity instead

Let us group the payoff function for the generalized spread option as

ψ(S1, · · · , Sn) =

0

@

X

i∈I+

wiSi −
X

i∈I−

|wi|Si −K

1

A

+

where I+ denotes the set of indices with positive weights and I− the negative weights.

The upper bound is attained when

Assets indexed in I+ are comonotonic to one another.

Assets indexed in I− are also c-monotonic to one another.

Any asset in I+ is antimonotonic to every asset in I−.

Special case: ψ(S1, S2) = (S1 − S2 −K)+

Upper bound is attained whenS1 and S2 are antimonotonic.

LB︸︷︷︸
comonotonic

≤ M ≤ UB
︸︷︷︸

antimonotonic
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Anti-monotonicity

Recall the definition of anti-monotonicity:

A two dimensional random vector (X1, X2) is said to be
anti-monotonic if there exists a uniformly distributed random
variable U such that

U ∼ Uniform(0, 1)

(X1, X2)
d
=
(
F−1

X1
(U), F−1

X2
(1 − U)

)
,

where FXi
(x) is the distribution function of Xi.
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Spread option

Therefore, for the generalized spread options with payoff
(
∑

i∈I+

wiSi −
∑

i∈I−

|wi|Si −K

)+

,

the upper bound is attained if there exists a uniformly
distributed random variable U ∼ Uniform(0, 1) such that

Si
d
= F−1

Xi
(U) for i ∈ I+

Si
d
= F−1

Xi
(1 − U) for i ∈ I−

where FSi(x) is the distribution function of Si.
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Super hedge portfolio

Observe the inequality

0

@

X

i∈I+

wiSi −
X

i∈I−

|wi|Si −K

1

A

+

≤
X

i∈I+

wi

„

Si −
λiK

wi

«+

+
X

i∈I−

|wi|

„

λiK

|wi|
− Si

«+

where λi ≥ 0 and
P

i∈I+ λi −
P

i∈I− λi = 1.

Taking expectation on both sides of the inequality we have

Spread option price ≤
X

i∈I+

wiCSi

„

λiK

wi

«

+
X

i∈I−

|wi|PSi

„

λiK

|wi|

«

where CSi
(k) and PSi

(k) are the call and put prices of Si struck at k respectively.

The super hedge portfolio is therefore obtained by minimizing the right hand side over the
constrained parameters λ1, · · · , λn.

The portfolio consists of buying calls for the components with positive weight and puts for
components with negative weights.
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Optimal solution

As in the basket case, the constrained minimization problem is solved by the method of
Lagrange multipliers.

Again the slopes ∆
(i)
j are ordered as a (strictly) decreasing sequence ∆1, · · · ,∆N with

repetitions removed, where

∆
(i)
j =

c
(i)
j−1−c

(i)
j

k
(i)
j

−k
(i)
j−1

for i ∈ I+

∆
(i)
j =

p
(i)
j

−p
(i)
j−1

k
(i)
j

−k
(i)
j−1

for i ∈ I−

Gather together all slopes
Puts and calls

Corresponding to each slope ∆l, λi(l) = wik
(i)ji(l)

K
is assigned to asset i, where

ji(l) = max{j ∈ {1, · · · , J(i)} : ∆
(i)
j ≥ ∆l} for i ∈ I+

ji(l) = min{j ∈ {1, · · · , J(i)} : ∆
(i)
j ≥ ∆l} for i ∈ I−
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Optimal solution

Starting with l = N , let us iteratively decrease l by one, until

X

i∈I+

λi(l) −
X

i∈I−

λi(l) = 1.

Denote the critical l by l∗. If the condition
P

i∈I+ λi(l) −
P

i∈I− λi(l) = 1 is not exactly
satisfied, linearly interpolate the λi’s for those indices i, which change when l decreases
from l∗ to l∗ − 1. Denote the interpolation factor by θ∗ and these indices by I+l∗ and I−l∗ for
positive and negative weights respectively.

Case I:
P

i∈I+ wik
(i)
i > K and

P

i∈I+ λi(l
∗) −

P

i∈I− λi(l
∗) = 1

UB =
X

i∈I+

C(i)

0

@

wik
(i)
ji(l∗)

K

1

A+
X

i∈I−

P (i)

0

@

wik
(i)
ji(l∗)

K

1

A
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Optimal solution

Case II:
P

i∈I+ wik
(i)
i > K and

P

i∈I+ λi(l
∗) −

P

i∈I− λi(l
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Simulation illustration

K Hedging Price MC Price MC accuracy S1 strike C S2 strike P

2 10.03 10.12 0.07 1.46 0.16 59/59.5 3.43/3.17

2.5 9.77 9.71 0.07 1.46 0.16 58.5 3.17/2.92

3.5 9.29 9.29 0.07 1.48 0.15 58 2.68

4.5 8.83 8.83 0.06 1.48 0.15 57.5/58 2.68/2.46

13 5.60 5.64 0.05 1.65/1.60 0.09/0.1 54.5 1.35

S1 and S2 are distributed like two antimonotonic geometric Brownian motions (equivalently the

instantaneous correlation ρ equals −1) with parameters σ1 = .355, σ2 = .2, T = .5 , r = 0,

d1 = d2 = 0. The Monte Carlo prices are computes using n = 50, 000 paths. The spot prices are

S1 = 1.48, S2 = 59.33, and the weights are w1 = 42, w2 = 1. The strikes that were actually

trading are given by the NYMEX data for the December 2006 contract.
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Empirical analysis

The results of monitoring the crack spread option, difference
between heating and crude oil for the contract that expired
December 2006 are shown in the following table. The table
shows the true price in the third column and the lower and
upper bounds in column 2 and 4. The comononotonicity and
antimonotonicity gaps are shown next, as well as their
relative counterparts.
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Empirical analysis

Day LB TP UB TP - LB UB - TP UB - LB TP−LB
UB−TP

UB−TP
UB−LB

6-Oct 1.39 2.65 7.52 1.25 4.88 6.13 0.20 0.80

13-Oct 1.53 3.06 7.53 1.52 4.47 6.00 0.25 0.75

20-Oct 1.26 2.55 6.72 1.30 4.17 5.46 0.24 0.76

23-Oct 0.95 2.40 5.22 1.45 2.82 4.27 0.34 0.66

26-Oct 1.29 2.24 6.15 0.95 3.91 4.86 0.20 0.80

30-Oct 0.57 1.39 5.17 0.81 3.78 4.60 0.18 0.82

31-Oct 0.57 1.36 5.10 0.79 3.73 4.52 0.17 0.83

1-Nov 0.49 1.09 4.75 0.60 3.65 4.26 0.14 0.86

2-Nov 0.47 2.26 4.69 1.79 2.43 4.22 0.42 0.58

3-Nov 0.60 2.50 4.92 1.90 2.42 4.32 0.44 0.56

6-Nov 0.85 2.96 5.17 2.11 2.21 4.32 0.49 0.51

7-Nov 1.00 1.45 5.04 0.45 3.59 4.04 0.11 0.89

8-Nov 0.83 1.25 4.87 0.42 3.62 4.04 0.10 0.90

9-Nov 1.13 1.10 5.19 -0.03 4.09 4.05 -0.01 1.01
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Empirical analysis

Day LB TP UB TP - LB UB - TP UB - LB TP−LB
UB−TP

UB−TP
UB−LB

10-Nov 0.87 1.10 4.87 0.23 3.77 4.00 0.06 0.94

13-Nov 0.60 0.65 4.36 0.05 3.71 3.76 0.01 0.99

14-Nov 0.93 0.80 4.69 -0.13 3.89 3.76 -0.04 1.04

15-Nov 1.05 1.15 4.87 0.10 3.72 3.83 0.03 0.97

16-Nov 1.21 1.53 4.92 0.32 3.39 3.71 0.09 0.91

20-Nov 1.36 1.37 4.82 0.01 3.45 3.46 0.00 1.00

21-Nov 2.13 2.23 5.47 0.10 3.24 3.35 0.03 0.97

28-Nov 1.35 1.51 4.28 0.16 2.77 2.93 0.05 0.95

29-Nov 2.10 2.10 4.83 0.00 2.73 2.73 0.00 1.00

1-Dec 1.70 1.75 4.25 0.05 2.50 2.55 0.02 0.98

4-Dec 1.30 1.20 3.69 -0.10 2.49 2.39 -0.04 1.04

5-Dec 1.09 0.82 3.35 -0.27 2.53 2.26 -0.12 1.12

6-Dec 1.03 0.97 3.14 -0.06 2.17 2.11 -0.03 1.03

7-Dec 0.72 0.56 2.64 -0.16 2.08 1.93 -0.08 1.08
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Empirical analysis

Day LB TP UB TP - LB UB - TP UB - LB TP−LB
UB−TP

UB−TP
UB−LB

8-Dec 0.64 0.38 2.36 -0.26 1.98 1.72 -0.15 1.15

11-Dec 0.50 0.15 1.84 -0.35 1.69 1.34 -0.26 1.26

12-Dec 0.53 0.14 1.74 -0.39 1.60 1.21 -0.33 1.33

13-Dec 0.62 0.16 1.56 -0.46 1.40 0.94 -0.49 1.49
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by

day
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day by day

To see how the gaps can generate a profit, suppose for instance
that on October 13th we sell the comonotonicity gap Gc for 1.52

(sell spread option and buy optimal subreplicating portfolio). Then
on November 21st, we buy back the gap for 0.1. If the annualized
interest rate is 0.05, we have made a profit of 1.51. Also, in our
data set, Ga is monotonically decreasing, so we can sell the
antimonotonicity gap on October 6th and buy it back for a profit at
almost any later date. The data set also appears to indicate some
arbitrage opportunities, but this may be offset by bid ask spreads
or lack of liquidity.
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Conclusions

We have discussed the market implied comonotonicity
gap as a tool for dispersion trading. Here it has been
illustrated empirically in the case of spread options.

Many open problems:
– Lower bound for basket options for more than two
assets
–Lower bound for two assets and more than one strike
constraint.

Add constraints on the correlation(s).

Statistical testing needed to determine optimal time to
enter into a Gap strategy. Studies of profit and loss over
periods of a year or more needed.
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Slogan: MIND THE GAP !
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