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Model for a “small” trader

Input: price process S = (St) for traded stock.

Key assumption: trader’s actions do not affect S .

For a simple strategy with a process of stock quantities:

Qt =
N∑

n=1

θn1(tn−1,tn],

where 0 = t0 < · · · < tN = T and θn ∈ L0(Ftn−1), the terminal
value

VT = VT (Q) =
N∑

n=1

θn(Stn − Stn−1)

Mathematical challenge: define terminal wealth VT for general
Q = (Qt).

3 / 25



Passage to continuous time trading

Two steps:

1. Establish that S is a semimartingale

1.1 ⇔ ∃ limit of discrete sums, when sequence (Qn) of simple
integrand converges uniformly (Bechteler-Dellacherie)

1.2 ⇐ Absence of arbitrage for simple strategies (NFLBR)
(Delbaen & Schachermayer (1994)).

2. If S is a semimartingale, then we can extend the map

Q → VT (Q)

from simple to general (predictable) strategies Q arriving to
stochastic integrals:

VT (Q) =

∫ T

0
QtdSt .
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Basic results for the “small” trader model

Fundamental Theorems of Asset Pricing:

1. Absence of arbitrage for general admissible strategies
(NFLVR) ⇔ S is a local martingale under an equivalent
probability measure (Delbaen & Schachermayer (1994)).

2. Completeness ⇔ Uniqueness of a martingale measure for S
(Harrison & Pliska (1983), Jacod (1979)).

Arbitrage-free pricing formula: in complete financial model the
arbitrage-free price for a European option with maturity T and
payoff ψ is given by

p = E∗[ψ],

where P∗ is the unique martingale measure.
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“Desirable” features of a “large” trader model

Logical requirements:

1. Allow for general continuous-time trading strategies.
2. Obtain the “small” trader model in the limit:

VT (εQ) = ε

∫ T

0
QtdS

(0)
t + o(ε), ε→ 0.

Practical goal: computation of liquidity or price impact corrections
to prices of derivatives:

p(ε) = εE∗[ψ] +
1

2
ε2C (ψ)︸ ︷︷ ︸

liquidity correction

+o(ε2).

Here p(ε) is a “price” for ε contingent claims ψ. Of course, we
expect to have

C (ψ) ≤ 0 for all ψ and < 0 for some ψ.
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Literature (very incomplete!)

Model is an input: Jarrow (1992), (1994);
Frey and Stremme (1997);
Platen and Schweizer (1998);
Papanicolaou and Sircar (1998);
Cuoco and Cvitanic (1998);
Cvitanic and Ma (1996);
Schonbucher and Wilmott (2000);
Cetin, Jarrow and Protter (2002);
Bank and Baum (2003);
Cetin, Jarrow, Protter and Warachka (2006),
. . .

Model is an output (a result of equilibrium):
Kyle (1985), Back (1990), Gârleanu, Pedersen,
Poteshman (1997). . .
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Financial model

1. Uncertainty and the flow of information are modeled, as usual,
by a filtered probability space (Ω,F , (Ft)0≤t≤T ,P).

2. Traded securities are European contingent claims with
maturity T and payments ψ = (ψi ).

3. Prices are quoted by a finite number of market makers.

3.1 Utility functions (um(x))x∈R,1≤m≤M (defined on real line):

1

c
< −u′m(x)

u′′m(x)
< c for some c > 0.

⇒ um has exp-like behavior. In particular, um is bounded
above and we can assume that

um(∞) = 0.

3.2 Initial (random) endowments α0 = (αm
0 )1≤m≤M (F-measurable

random variables) form a Pareto optimal allocation.
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Pareto allocation

Definition
A vector of random variables α = (αm)1≤m≤M is called a Pareto
allocation if there is no other allocation β = (βm)1≤m≤M of the
same total endowment:

M∑
m=1

βm =
M∑

m=1

αm,

which would leave all market makers not worse and at least one of
them better off in the sense that

E[um(βm)] ≥ E[um(αm)] for all 1 ≤ m ≤ M,

and
E[um(βm)] > E[um(αm)] for some 1 ≤ m ≤ M.
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Pricing measure of Pareto allocation

First-order condition: We have an equivalence between
1. α = (αm)1≤m≤M is a Pareto allocation.
2. The ratios of the marginal utilities are non-random:

u′m(αm)

u′n(α
n)

= const(m, n).

Pricing measure Q of a Pareto allocation α is defined by the
marginal rate of substitution rule:

dQ
dP

=
u′m(αm)

E[u′m(αm)]
, 1 ≤ m ≤ M.

(Marginal) price process of traded contingent claims ψ
corresponding to a Pareto allocation α is defined to be

St = EQ[ψ|Ft ]

A trading of very small quantities at this price does not change
the expected utilities of market makers.
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Simple strategy

Strategy: a process of quantities Q = (Qt) of ψ.

Goal: specify the terminal value VT = VT (Q).

Consider a simple strategy with the process of quantities:

Qt =
N∑

n=1

θn1(tn−1,tn],

where θn is Fτn−1-measurable.
We shall define the corresponding cash balance process:

Xt =
N∑

n=1

ξn1(tn−1,tn],

where ξn is Fτn−1-measurable.
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Trading at initial time

1. The market makers start with the initial Pareto allocation
α0 = (αm

0 )1≤m≤M of the total (random) endowment:

Σ0 :=
M∑

m=1

αm
0 .

2. After the trade in θ1 shares at the cost ξ1, the total
endowment becomes

Σ1 = Σ0 − ξ1 − θ1ψ.

3. Σ1 is redistributed as a Pareto allocation α1 = (αm
1 )1≤m≤M .

4. Key condition: the expected utilities of market makers do
not change, that is,

E[um(αm
1 )] = E[um(αm

0 )], 1 ≤ m ≤ M.
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Trading at time tn

1. The market makers arrive to time tn with Ftn−1-Pareto
allocation αn of the total endowment:

Σn = Σ0 − ξn − θnψ.

2. After the trade in θn+1 − θn shares at the cost ξn+1 − ξn, the
total endowment becomes

Σn+1 =Σn − (ξn+1 − ξn)− (θn+1 − θn)ψ
=Σ0 − ξn+1 − θn+1ψ.

3. Σn+1 is redistributed as Ftn -Pareto allocation αn+1.

4. Key condition: the conditional expected utilities of market
makers do not change, that is,

E[um(αm
n+1)|Ftn ] = E[um(αm

n )|Ftn ], 1 ≤ m ≤ M.
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Final step

The large trader arrives at maturity tN = T with

1. quantity QT = θN of the traded contingent claims ψ.

2. cash amount XT = ξN .

Hence, finally, her terminal wealth is given by

VT := XT + QTψ.

Lemma
For any simple strategy Q the cash balance process X = X (Q) and
the terminal wealth VT = VT (Q) are well-defined.

Mathematical challenge: define terminal wealth VT for general
strategy Q.
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More on economic assumptions

The model is essentially based on two economic assumptions:

Market efficiency After each trade the market makers form a
complete Pareto optimal allocation.
⇔ They can trade anything with each other (not only ψ)!

Information The market makers do not anticipate (or can not
predict the direction of) future trades of the large economic agent.
⇔ Two strategies coinciding on [0, t] and different on [t,T ] will
produce the same effect on the market up to time t.
⇔ The agent can split any order in a sequence of very small
trades at marginal prices.
⇔ The expected utilities of market makers do not change.

Remark
From the investor’s point of view this is the most “friendly” type
of interaction with market makers.
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Comparison with Arrow-Debreu equilibrium

Economic assumptions behind a large trader model based on
Arrow-Debreu equilibrium:

Market efficiency (Same as above)
After re-balance the market makers form a Pareto optimal
allocation.
⇔ They can trade anything between each other (not only ψ)!

Information The market makers have perfect knowledge of
strategy Q.
⇔ Changes in Pareto allocations occur only at initial time.
⇒ Expected utilities of market makers increase as the result of
trade.
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Model based on Arrow-Debreu equilibrium

Given a strategy Q the market makers immediately change the
initial Pareto allocation α0 to another Pareto allocation α̃ = α̃(Q)
with pricing measure P̃, the price process

S̃t := EeP[ψ|Ft ]

and total endowment

Σ̃ :=
M∑

m=1

α̃m

such that

Σ0 − Σ̃ =

∫ T

0
QtdS̃t ,

and the following “clearing” conditions hold true:

EeP[αm
0 ] = EeP[α̃m], 1 ≤ m ≤ M.
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Process of Pareto allocations
Back to our model.

Mathematical challenge: define terminal wealth for general Q.

Consider a simple strategy

Qt =
N∑

n=1

θn1(tn−1,tn],

where θn is Fτn−1-measurable and denote by

At =
N∑

n=1

αn1(tn−1,tn]

the corresponding (non-adapted!) process of Pareto allocations.

Remark
The Pareto allocation At contains all information at time t but is
not Ft-measurable (infinite-dimensional sufficient statistic).

18 / 25



Process of indirect utilities

The process of expected (indirect) utilities for market makers:

Um
t = E[um(Am

t )|Ft ], 0 ≤ t ≤ T , 1 ≤ m ≤ M.

Crucial observation: for a simple strategy Q at any time t

knowledge of (Ut ,Qt) ↔ knowledge of At .

⇒ (U,Q) is a finite-dimensional (!) sufficient statistic.
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Technical assumptions

Assumption

The utility functions of market makers have bounded prudence
coefficient: ∣∣∣∣−u′′′(x)

u′′(x)

∣∣∣∣ ≤ K , for some constant K > 0.

Assumption

The filtration is generated by a Brownian motion W = (W i ) and
the Malliavin derivatives of the total initial endowment Σ0 and the
payoffs ψ = (ψk) are bounded:

|Dt(Σ0)|+ |Dt(ψ)| < K , 0 ≤ t ≤ T , for some constant K > 0.
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Passage to continuous-time trading

The key intermediate result is the following

Theorem
Assume the technical conditions above. There is a continuously
differentiable stochastic vector field G = (Gt(u, q)) and a constant
K > 0 such that

|Gm
t | ≤ K |um|(1 + |q|)

|∂Gm
t

∂uk
| ≤ K

um

uk
(1 + |q|)

and for any simple strategy Q the indirect utilities of the market
makers solve the following stochastic differential equation:

dUt = Gt(Ut ,Qt)dWt , Um
0 = E[um(αm

0 )].
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Stability of SDE

The construction of general strategies follows from the following

Theorem
Assume the technical conditions above. Let (Qn) be a sequence of
simple processes and Q be a (general) stochastic process such that∫ T

0
(Qn

t − Qt)
2dt

P→ 0, n →∞.

Then the terminal values VT (Qn) converge in probability to

VT (Q) =
M∑

m=1

αm
0 −

M∑
m=1

u−1
m (Um

T )

where U = U(Q) solves the following SDE:

dUt = Gt(Ut ,Qt)dWt , Um
0 = E[um(αm

0 )].
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Remark on admissibility

The previous theorem allows us to define terminal wealth for any
process Q satisfying:∫ T

0
Q2

t dt <∞ (P− a.s.).

Contrary to classical “small” agent model this set of strategies
does not allow arbitrage. Indeed,

U(Q) is a local martingale bounded above ⇒ submartingale .

It follows that

E[um(Am
T (Q))] ≥ E[um(αm

0 )], 1 ≤ m ≤ M.

Hence,

VT (Q) =
M∑

m=1

αm
0 −

M∑
m=1

Am
T (Q) ≥ 0 ⇒ VT (Q) = 0.
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Asymptotic analysis: summary of results

I For a strategy Q we have the following expansion for terminal
wealth:

VT (εQ) = ε

∫ T

0
QudS0

u +
1

2
ε2LT (Q),

where LT (Q) can be computed by solving two auxiliary linear
SDEs.

I We use above expansion to compute replication strategy and
liquidity correction to the prices of derivatives in the next
order (ε2). (Good qualitative properties!)

I Liquidity correction to the prices of derivatives can also be
computed using an expansion of market indifference prices.
(Easier to do than hedging!).

I Key inputs: risk-tolerance wealth processes of market makers
for initial Pareto equilibrium.

24 / 25



Conclusion

I We have developed a continuous-time model for large trader
starting with economic primitives, namely, the preferences of
market makers.

I In this model, the large investor trades “smartly”, not
revealing herself to market makers and, hence, not increasing
their expected utilities.

I We show that the computation of terminal wealth VT (Q) for
a strategy Q comes through a solution of a non-linear SDE.

I The model allows us to compute rather explicitly liquidity
corrections to the terminal capitals of trading strategies and
to the prices of derivatives.

I The model has “good” qualitative properties.
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