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Motivation and introduction

Motivation and Introduction

@ Rapid development of credit portfolio products : k-to-default
swap, CDOs

@ A practical question proposed by the practitioners: possibility of a
recursive procedure to study the successive defaults?

@ Calculation of conditional expectations E[Yt|Gt] when (Gi)i>o is
some large filtration including default informations

@ Study of the “after-default case” by using the density process
approach
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An illustrative example

An illustrative example
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An illustrative example
An illustrative example

@ A simple deterministic model of two credits, denote by
7 = min(rg, 72).
@ Observable information : whether the first default occurs.

@ The basic hypothesis is based on a stationary point of view of the
practitioners

P(n>T |7r>t)=e #OT-0 (i=12)

where 1'(t) characterizes the individual default and it can be
renewed with market information at t.

@ The marginal distributions remain in the exponential family.
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The joint probability

@ Let P(T]_ >t, 7 > tz) = P(Tl > tl)]P)(T2~> tz)p(tl,tz).
Consider the survival copula function C(u, v) such that
C(]P’(T]_ > tl),P(Tz > tz)) = P(T]_ >, > tz), then

dnu_Inv_ ; .
é(u,v) = UVp<u1(0)’ uz(O))’ if u,v>0;
07 if u=0 or v=0.

@ Joint probability : If p(t1,t,) € CL1, then the joint survival
probability is given by

ty ty
P(r > t1, 7 > 1) = exp ( — /0 pt(s Atp)ds —/0 12(s A tl)ds>.

@ First observation: The joint probability function depends on all the
dynamics of the marginal distributions and the copula can not be
chosen independently with marginal distributions.
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The joint probability

@ Proposition: If p(ty,ty) € C2 and if p(t), u?(t) € CL, then
]P’(T]_ >, > t2)

= exp ( — 2 (0)ty — 2(0)tp + /Otl/\tz o(s)(ty +to — 23)ds>.

82
where ¢(t) = 0t

- tIn p(t1,t2). In addition, we have
1=102=

W) =40 - | ' o(s)ds.

@ ;! and p? follow the same dynamics apart from their initial values
due to the symmetric information flow and the stationary property.
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An illustrative example

First default and contagious jumps

@ The distribution of the first default is given by
P(r >t) =exp ( fo )ds)

@ For the surviving credlt? it becomes complicated. Let
Dy = D V DZ where D} = o(1l,<s},s <t) (i = 1,2). Then

E[fLy, o1y = 1y, exp ((ui(o) - [ eteys)r - t))

e o0 (<00 - [ es)ds) T 1)

(0) - (r)( —r) 5 so(s)ds
14(0) — )(t—7) fo

@ We observe the contagious jump phenomenon
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An illustrative example
The second default time

@ Second observation on o = max(7, 72): the conditional
distribution E[1L;,-1,|D{] can not remain in the exponential family
neither on {7 >t} nor on {7 <t}, except when 71 and 7, are
independent and identically distributed.

@ Remark: conditioned on the first default, these exists no longer the
stationary property, as expected by some market practitioners!

@ We need to study the successive defaults in an abstract way.
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The density process framework

The General Case

the density process framework
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The density process framework

Before-default case and Minimal assumption

@ Let (Q,G,G,P) be afiltered probability space representing the
market. The filtration G = (Gt):>o represents the global
information on the market.

@ Let 7 be a finite G-stopping time.

@ Consider a subfiltration F of G satisfying the following condition
presented by Jeulin and Yor (1978), Jacod (1982).

@ (Minimal Assumption): We say (F, G, 7) satisfy the Minimal
Assumption (MA) if for any t > 0 and any U € G;, there exists
V e FisuchthatUn{r >t} =V n{r >t}

Workshop Amamef (Vienna) Dynamical modelling of successive defaults 21 Sep, 2007 11/23



The density process framework

Before-default case and Minimal assumption

Two examples of (IF, G, 7) satisfing MA:
@ In the single credit case, 7 represents one default time and let
D = (Dt)t>0 where Dy = (L {;<s},s < t). [ satisfies G =D V F.
@ In the multi-credits case, 7 represents the first default time
7 =min(ry,--- ,m) and F satisfies G =F v D!... v D"

A direct consequence: Assume that (F, G, 7) satisfy MA. For any
G-measurable random variable Y, if P(7 > t|#) > 0, a.s. then

E[ll{;>0Y [ F]

E[L iy Y [G] = ]1{7>‘}W'
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The density process framework
After-default case and Density process

(H; Hypothesis, Jacod (82)) For any t, 6 > 0, we assume that there
exists a family of F-adapted processes, called the density process
(at(u),t > 0), such that

Si(8) = P(r > 0|7) = /aoo o (U)du.

Foranyt,u > 0, let Y (t,u) be a random variable such that

Y(t,u) e ;t @ B(R). If G=F Vv D and if ox(u) > 0, then for any

0<t<T,

E[Y(T,s)ar(s)|A]
at(s)

E[Y (T, )Gt L r<ty =

1 .
s=r =Y

W
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The density process framework
Density and intensity processes

@ The G-compensator process A of 7 is a predictable process such
that (Nt = LLg,<py — A, t > 0) is a G-martingale. If A, = [; AZds,
then A\ is called the G-intensity process.

@ Proposition: Assume that (I, G, 7) satisfy minimal assumption. If
the survival density at(u) exists, then the G-compensator process
A of 7 is given by

(67 (t)

)T o

dAy = T, )(t) o cvondt.
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The density process framework
Density and intensity processes

@ The intensity process can be deduced from the density process.
However, the reverse is not true in general.

@ Proposition : Assume that (F, G, 7) satisfy minimal assumption. If
the G-intensity process (A{G,t > 0) of 7 exists. Then, for any u > t,
the density of the conditional survival law of 7 is given by

ar(u) = EX§|A].

@ The after-default case requires us to know a;(u) for u < t, which
can not be obtained from the intensity process.
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Successive defaults

Successive defaults
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Two ordered default times - the first default

@ Consider 7, and , with associated filtrations D! and D?. Let F
such that G = F v D! v D2

@ Let 7 = min(r, ) and o = max(r, 7») with D) and D(2),

o (IF, G, r) satisfy the minimal assumption. Hence the first default
can be treated in the same way as for a single credit.

@ Proposition: Assume that the joint density process of (71, 7)
exists, i.e.

o

P(r1 > t1, 2 >t | Ft) = / duy duz pt(ug, Uz).

ty tz

Then the density process (o] (¢),t > 0) of 7 is given by
af (0) :/9 du (pe(6,u) + pe(u,0)).
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Successive defaults
Two ordered default times - between two defaults

@ The period between two defaults corresponds to before-default
case of ¢ and after-default case of 7.

o LetGW =FvDW and G® = GcM v DA, We calculate
G@)-conditional expectations by a recursive way.

@ Corollary : Assume that the conditional density process of
St(z‘l)(e) =P(o > eyg(“) =[° /tzu) )du exists for all t, 6 > 0.
Let Y (T,ty,t2) be an Fr-measurable r.v. such that Y(.,tl,tz) is a
Borel function. Then

B[ 7 dupY (T, 7, u)al? (1) |6

19 dug oD (uy)

IE[Y (T7Ta 0)|gt(2)]ﬂ{7§t<a}: ]]-{Tgt<o}
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Successive defaults
Two ordered default times - between two defaults

@ Furthermore, we can bring all calculations to F-conditional
expectations.

@ Proposition : Assume that the joint density process
(i (ty,t2),t > 0) of (7, 0) exists for all t;,t; > 0. Then

J7° dugae(uy, 6) (7, 6)
+h <y
dUlf duzar(ug, u) J77 dugan (7, uz)

P (g) = Ny =

Moreover,

dvY (T,u,Vv)ar(u,v)
E[Y (T, J)’gt(Z)]]l{TSI<O'}:]1{T§t<O'}E IS ‘ft]

[ dvag(u, v)

u=r
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Successive defaults
Intensity process of 7 and o

@ Denote by A' the G-compensator process of 7
@ For the first default : If P(r; = 72) = 0, then

1 2
;-/\‘r = /\t/\T + At/\T'
@ For the second default: by the recursive method, we have

it (7—1 t)
I dugan (7, up)

dA? = Ly () dt
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Successive defaults
Joint density processes

@ Calculations are determined by the F-adapted process
(at(tl, tz),t > 0)

@ Similar results exist for 1 and m following 4 possible default
scenarios, using the non-ordered denstiy process

(pt(t1, t2),t > 0).

@ Proposition : For any t,t;,t, > 0,

ar(ty, t2) = Ty <ip (Pr(te, t2) + Pr(t2, t1)).

@ Modelling of (pt(ty,t2),t > 0)!
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Successive defaults

Generalization and application

@ Consider ordered G-stopping times o1 < --- < op,

n
E[Y (T o0, ,on)l60 "] =3 L cton,ot
i=1

E[ftcs/oui dUi+1 fuoil U fucl:o dUnY (T7 Up,: - 7Un)OlT(U17 T ,Un)’]:t]

\/;\/u Uit+1 u,+1 ”fuc:,o_ldunat(ulv"' ,Un)

Ui=o1

Uj=o;j

When i = n, we use convention op;1 = 00
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Successive defaults
Application

@ Pour les CDOs, letlt = >, Ti,<7). then

K
E[(K —)*ig "] :/ B[y < l6 V] dK

K )
1,
B /_ E[n{U[K]+1>T}|gt( n)] dK

@ Forany m > 0,

m-—1

B[ ooyl G V] = D Lo <taony
=1

E[ﬁ(\)/ouj' de+1 fu(il T fuC:il dun:n'{um>T} O[T(ulu o ,Un)u:t}

\/;C\)/Ouj duj+l T fuonoil dun at(ulu T ul’l)

Ui=o1

Uj=0j
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