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An outline of this talk is as follows.

• What is the Realized Volatility (RV) ?

• Known facts on the RV.

• What is the Tick Time Sampling (TTS) ?

• Robustness to market microstructure noise.

• Main result - asymptotic mixed normality.

First, we recall the definition of the realized volatility,
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An outline of this talk is as follows.

• What is the Realized Volatility (RV) ?

• Known facts on the RV.

• What is the Tick Time Sampling (TTS) ?

• Robustness to market microstructure noise.

• Main result - asymptotic mixed normality.

and then, I explain several known facts on the RV.
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An outline of this talk is as follows.

• What is the Realized Volatility (RV) ?

• Known facts on the RV.

• What is the Tick Time Sampling (TTS) ?

• Robustness to market microstructure noise.

• Main result - asymptotic mixed normality.

Next, I introduce a specific sampling scheme, named TTS.
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An outline of this talk is as follows.

• What is the Realized Volatility (RV) ?

• Known facts on the RV.

• What is the Tick Time Sampling (TTS) ?

• Robustness to market microstructure noise.

• Main result - asymptotic mixed normality.

The RV based on the TTS is robust to microstructure noise.
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An outline of this talk is as follows.

• What is the Realized Volatility (RV) ?

• Known facts on the RV.

• What is the Tick Time Sampling (TTS) ?

• Robustness to market microstructure noise.

• Main result - asymptotic mixed normality.

Finally, I state the main result of this talk.
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What is the RV?

Let {τj} be a partition of [0, T ] with

0 = τ0 < τ1 < · · · < τn < τn+1 = T.

Define the RV as the sum of squared log-returns, i.e.,

RV =
n−1∑
j=1

∣∣∣log(Sτj+1) − log(Sτj)
∣∣∣2 .

It is well known that if Xt : = log(St) satisfies

dXt = µ(t, X)dt + σ(t, X)dWt

and supj |τj+1 − τj| → 0, it holds that

RV → IV: =
∫ T

0
σ(t, X)2dt.
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What is the RV?

• Since the IV relates the risk of the corresponding stock, we
want to estimate it by historical data.

• Recently, the RV has attracted researchers because of the
availability of high frequency data .

• Theoretically, the higher the sampling frequency, the more
accurate the RV as an estimator of the IV.

• The consistency holds for not only deterministic but random
sampling schemes (partitions).
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An example of high frequency data: FX rates

EUR/JPY 10 Sep 2007

DATE TIME VOLUME OPEN CLOSE MIN MAX
09/09/2007 23:59:51 8 155.50 155.55 155.50 155.56
09/10/2007 00:00:01 15 155.53 155.55 155.49 155.58
09/10/2007 00:00:11 6 155.55 155.56 155.53 155.57
09/10/2007 00:00:21 2 155.51 155.50 155.50 155.52
09/10/2007 00:00:31 13 155.50 155.52 155.50 155.56
09/10/2007 00:00:41 21 155.53 155.52 155.49 155.54
09/10/2007 00:00:51 15 155.52 155.53 155.51 155.57
09/10/2007 00:01:01 10 155.57 155.57 155.54 155.58

Here prices are recorded every 10 seconds. Higher frequency

data are also available. We bear this type of data in mind.
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Known facts on the RV.

• CLT for deterministic sampling; if e.x.,

τj = τn
j = Tj/(n + 1),

that is, if the partition is equidistant in time, then

√
n(RV(n) − IV) ⇒ MN (0,2T IQ), IQ =

∫ T

0
σ(t, X)4dt

as n → ∞. This type of result is useful for, say, constructing
confidence intervals.

• In practice, however, the RV based on {τn
j } seems not con-

sistent. It’s because the observed values of Sτn
j

are contam-
inated by market microstructure noise.

6



0 100 200 300 400 500 600

0.
00

00
6

0.
00

00
8

0.
00

01
0

0.
00

01
2

0.
00

01
4

0.
00

01
6

Signature plot (EUR/JPY, 10 Sep 2007)

sampling interval(sec)

R
V

7



1. Central Limit Theorems:

(a) Jacod and Protter (1998)

(b) Barndorff-Nielsen and Shephard (2002)

(c) Mykland and Zhang (2002)

2. Microstructure noise: e.x.

(a) Zhou (1996)

(b) Bandi and Russell (2003)

(c) Barndorff-Nielsen, Hansen, Lunde and Shephard (2004)

(d) Zhang, Mykland and Äıt-Sahalia (2005)

(e) Hansen and Lunde (2006)

3. Rounding error: Delattre and Jacod (1997)

8



The easiest way to deal with the problem is to throw away a

large fraction of the available data (sampling less frequently).

However, this approach is not sound in statistical point of view.

In spite of a lot of studies, there is no decisive solution.

Here we propose another treatment of the microstructure noise

to tackle this problem.

A similar approach to Griffin and Oomen (2006), Large (2005).
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One of major source of this inconsistency is price discreteness.

Let us assume the observed bid and ask prices Bt and At to be
given as

Bt = δbβSt/δc, At = δdαSt/δe

for δ > 0, representing tick size, β ∈ (0,1] and α ≥ 1, representing
costs of quote exposure. It holds Bt ≤ βSt ≤ St ≤ αSt ≤ At.

The efficient price St is latent in this model. Since

log(Bτn
j+1

) − log(Bτn
j
) = log(Sτn

j+1
) − log(Sτn

j
) + O(δ),

while

log(Sτn
j+1

) − log(Sτn
j
) = O(

1
√

n
),

the noise term becomes dominant as n → ∞ with δ fixed. The
same situation occurs also in the use of At or (At + Bt)/2.
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[What is the TTS?]

Let us solve the problem by changing the sampling scheme.

1. Calender Time Sampling (CTS): τn
j = Tj/(n + 1), which we

have considered so far, a partition equidistant in time.

2. Tick Time Sampling (TTS): based on the price (quote)
changes, a partition equidistant in space.

In the following, we consider a version of the TTS and show that
the RV based on the TTS is free from the noise problem.

Idea; no rounding error occurs if we sample the price when it lies
on the price grid.
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[What is the TTS?] Definition; τ ε
j+1 = inf{t > τ ε

j ; |St − Sτ ε
j
| ≥ ε}
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[Robustness to market microstructure noise]

The key fact is that Bτ ε
j
= βSτ ε

j
(no rounding error) for ε = δ/β.

Moreover,∣∣∣∣log(Bτ ε
j+1

) − log(Bτ ε
j
)
∣∣∣∣2 =

∣∣∣∣log(βSτ ε
j+1

) − log(βSτ ε
j
)
∣∣∣∣2

=
∣∣∣∣log(Sτ ε

j+1
) − log(Sτ ε

j
)
∣∣∣∣2 .

The log-returns based on the bid price coincides with that based

on the efficient price.

This means that the TTS yields an appropriate RV even if we

use the bid price to calculate the RV.
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Moreover, since

τ ε
j+1 =inf{t > τ ε

j ; |St − Sτ ε
j
| ≥ ε}

=inf{t > τ ε
j ;Bt ≥ Bτ ε

j
+ δ} ∧ inf{t > τ ε

j ;Bt ≤ Bτ ε
j
− 2δ},

the sampling can be done by observing only the bid quote.

We can use also the ask quotes instead of the bid.

We have seen so far that the RV based on the TTS is robust

to microstructure noise induced by the price discreteness and

bid-ask spreads.

It is then natural to ask if the corresponding CLT holds.
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Main result - Asymptotic mixed normality.

Recall

dXt = µ(t, X)dt + σ(t, X)dWt

and let Xt = ϕ(St) ( e.x. ϕ = log ). If

τ ε
j+1 = inf{t > τ ε

j ; |St − Sτ ε
j
| ≥ ε}

and Girsanov’s theorem holds for X, then it holds

ε−1(RV(ε) − IV) ⇒ MN (0,Σ) (1)

as ε → 0, where

Σ =
2

3

∫ T

0
ϕ′(St)

2d〈ϕ(S)〉t.
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• It is noteworthy that putting MT = max{j; τj+1 ≤ T},
∑MT

j=1 |Xτj+1 − Xτj |2 − IV√∑MT
j=1 |Xτj+1 − Xτj |4

⇒ N (0,2/3)

for both the CTS and the TTS. The result for the CTS is

already known.

• A key lemma for the proof is

E

[∣∣∣|Xτj+1 − Xτj |
2 −

(
τj+1 − τj

)∣∣∣2]
=

2

3
E

[∣∣∣Xτj+1 − Xτj

∣∣∣4]
for both the CTS and the TTS, if X is a Brownian motion.

This identity is trivial for the CTS where τj+1 − τj = T/n.
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Concluding remarks:

1. The general case reduces to the Brownian motion case by

the Girsanov transformation and the time-change method.

2. It converges σ(X)-stably in D[0, T ].

3. The result can be extended to the stochastic volatility model.

4. It remains for further research to investigate the performance

in real data.
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