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Cumulative gains with gamma information

There are problems in finance and insurance that involve the analysis of
accumulation processes—processes representing cumulative gains or losses.

The typical setup is as follows: we fix an accounting period [0, T ].

At time T a contract pays a random cash flow XT given by the terminal value of
a process of accumulation.

In the case of an insurance contract, the random XT represents the totality of
the payments made at T in settlement of claims arising over the period [0, T ].

The problem facing the insurance firm is the valuation of the random cash flow.

We write {St} for the value process of the contract that pays XT at T , {Ft} for
the market filtration, and Q for the pricing measure established by market.

Then the value at t of the contract that pays XT at T is

St = PtTE[XT |Ft], (1)

where E[−] = EQ[−] and PtT is the discount factor (assumed deterministic).
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One can interpret St as the reserve that the insurance firm requires at t in order
to ensure that XT will be payable at T .

Similarly, the cost ItT at t of a simple stop-loss reinsurance contract that pays
out (XT −K)+ at T for some fixed threshold K is given by

ItT = PtTE[(XT −K)+|Ft]. (2)

We shall assume that {Ft} is generated by an aggregate claims process {ξt},
where for each t the random variable ξt represents the totality of claims known
at t to be payable at T .

Problem: given the history of claims up to time t, what is the appropriate
reserve to be set aside for settlement of these and any future claims?

To obtain a specific solution to the problem we need to specify the aggregate
claims process {ξt} and the measure Q, then work out the reserve process {St}.
Once we have {St}, we can value various types of reinsurance contracts.

The purpose of this talk is to present a modelling framework for accumulation
processes, and to establish explicit pricing formulae for various contracts.
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In particular, we shall assume that {ξt} takes the form

ξt = XTγtT , (3)

where {γtT} is a gamma bridge over the interval [0, T ], independent of XT .

The motivation for the specific form of the accumulation process arises partly
from the idea that the gamma process can be used as a mathematical basis for
describing the aggregate losses associated with insurance claims.

This idea dates back to the work of Hammersley (1955), Moran (1956), Gani
(1957), and Kendall (1957) in connection with the theory of storage and dams.

Moran, in particular, presented an argument showing that the aggregate amount
of rainfall accumulating in a dam can be modelled by a gamma process.

Gani pointed out the relevance to insurance, the argument being that providing
that the portfolio of events insured is sufficiently large, one can think of the
arrival of claims as being analogous to the accumulation of dam rain.

Before we proceed, however, let us begin with a brief introduction to gamma
processes and associated bridge processes.
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Gamma processes and associated martingales

We fix a probability space (Ω,F ,Q).

By a standard gamma process {γt}0≤t≤∞ with rate m we mean a process with
independent increments such that γ0 = 0 and such that the random variable
γu − γt for u ≥ t ≥ 0 has a gamma distribution with parameter m(u− t):

g(x) = 1{x>0}
xm(u−t)−1e−x

Γ[m(u− t)]
(4)

It follows from Γ[a + 1]/Γ[a] = a that

E[γt] = mt, (5)

which justifies the interpretation of the parameter m as the mean growth rate of
the process.

A straightforward calculation shows that

E
[
eiλγt

]
=

1

(1 − iλ)mt
(6)

for t ≥ 0 and all λ ∈ C such that Im(λ) > −1.

Advanced Mathematical Methods for Finance c© DC Brody 2007



Dam Rain and Cumulative Gain - 7 - 18 September 2007

An alternative expression for the characteristic function is given by the
Lévy-Khinchine representation E

[
eiλγt

]
= e−tψ(λ), where

ψ(λ) = m ln(1 − iλ) =

∫ ∞

0

mx−1e−x
(
1 − eiλx

)
dx, (7)

which shows that the associated Lévy density is given by mx−1e−x.

From the independent increments property we deduce that

{γt −mt} and {γ2
t − 2mtγt +mt(mt− 1)} (8)

are martingales.

Likewise, {(1 + α)mte−αγt} is a geometric gamma martingale.

In general, we let {L(k)
n (z)} denotes the associated Laguerre polynomials:

(1 + α)mte−αz =
∞∑
n=0

L(mt−n)
n (z)αn. (9)

Then {L(mt−n)
n (γt)}n=0,1,...,∞ are also martingales.
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Properties of the gamma bridge process

Now suppose {γt}0≤t≤∞ is a standard gamma process with rate m.

For fixed T define the process {γtT}0≤t≤T by

γtT =
γt
γT
. (10)

Then clearly we have γ0T = 0 and γTT = 1.

We refer to {γtT} as the standard gamma bridge over the interval [0, T ]
associated with the gamma process {γt}.
The density function of the random variable γtT is given by

f(y) = 1{0<y<1}
ymt−1(1 − y)m(T−t)−1

B[mt,m(T − t)]
, (11)

where B[a, b] = Γ[a]Γ[b]/Γ[a + b].

The gamma bridge has the following remarkable property.

For all T ≥ t ≥ 0 the random variables γt/γT and γT are independent.
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Sample paths for the gamma bridge
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Gamma information and the valuation of contingent claims

Our objective now is to calculate the value at time t of the claim that pays XT

at time T , where XT is a positive random variable.

We assume that the market filtration is generated by an information process
{ξt}0≤t≤T of the form

ξt = XTγtT , (12)

where {γtT} is a Q-gamma bridge with parameter m.

The gamma bridge {γtT} is independent of the random variable XT , and
represents in some sense the noise that obscures the true value of XT .

The gamma information process {ξt}0≤t≤T has the Markov property.

The value St of the claim at time t is then given by

St = PtTE [XT | ξt] . (13)

The conditional probability density for XT ,

πt(x) =
d

dx
Q [XT ≤ x | ξt] , (14)
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can be computed by use of the Bayes formula:

πt(x) =
p(x)ρ (ξt |XT = x)∫ ∞

0 p(x)ρ(ξt |XT = x)dx
, (15)

where {p(x)}0<x<∞ is the a priori density function for XT .

The result is given by

πt(x) = 1{x>ξt}
p(x)x1−mT (x− ξt)

m(T−t)−1∫ ∞
ξt
p(x)x1−mT (x− ξt)m(T−t)−1dx

. (16)

It follows that the conditional expectation can be calculated to give us:

St = PtT

∫ ∞
ξt
p(x)x2−mT (x− ξt)

m(T−t)−1 dx∫ ∞
ξt
p(x)x1−mT (x− ξt)m(T−t)−1 dx

. (17)

When XT is a discrete random variable taking values {xi} with a priori
probabilities {pi}, we have

St = PtT

∑
i pix

2−mT
i (xi − ξt)

m(T−t)−11{ξt<xi}∑
i pix

1−mT
i (xi − ξt)m(T−t)−11{ξt<xi}

. (18)
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Figure 1: Sample paths for the asset price process. The rate parameter is m = 0.5. Interest rate is r = 5%.
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Figure 2: Sample paths for the asset price process. The rate parameter is m = 1.0. Interest rate is r = 5%.
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Figure 3: Sample paths for the asset price process. The rate parameter is m = 5.0. Interest rate is r = 5%.

Advanced Mathematical Methods for Finance c© DC Brody 2007



Dam Rain and Cumulative Gain - 15 - 18 September 2007

0.2 0.4 0.6 0.8 1
t

1.5

2

2.5

3

3.5

4

m�10

Figure 4: Sample paths for the asset price process. The rate parameter is m = 10. Interest rate is r = 5%.
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Valuation of reinsurance contracts

We consider now the valuation of call options on the terminal payout of a
aggregate claims process.

Such options have the interpretation of stop-loss reinsurance contracts.

The option maturity is set at time t < T , and the strike at K.

If we define the function S(t, y) for 0 ≤ t ≤ T and y ≥ 0 by

S(t, y) = PtT

∫ ∞
y p(x)x2−mT (x− y)m(T−t)−1dx∫ ∞
y p(x)x1−mT (x− y)m(T−t)−1dx

, (19)

then the price at time t of the asset is given by S(t, ξt).

Therefore, the initial value of the call option is

C0 = P0tE
[
(S(t, ξt) −K)+]

= P0tE

[∫ ∞

0

δ(ξt − y) (S(t, y) −K)+ dy

]

=

∫ ∞

0

A0t(y) (S(t, y) −K)+ dy. (20)
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Here we have defined

A0t(y) = P0tE[δ(ξt − y)] (21)

for the Arrow-Debreu security on the aggregate gains process.

A short calculation shows that

A0t(y) = P0t
ymt−1

B[mt,m(T − t)]

∫ ∞

y

p(x)x1−mT (x− y)m(T−t)−1dx. (22)

In terms of A0t(y) the initial call price is given by

C0 =

∫ ∞

0

A0t(y) [S(t, y) −K]+ dy. (23)

We thus find

C0 =
P0t

B[mt,m(T − t)]

∫ ∞

0

[
PtT

∫ ∞

y

p(x)x2−mTymt−1(x− y)m(T−t)−1dx

−K
∫ ∞

y

p(x)x1−mTymt−1(x− y)m(T−t)−1dx

]+

dy. (24)

We let y∗ denote the critical value of y such that the argument of the
max-function vanishes.

Advanced Mathematical Methods for Finance c© DC Brody 2007



Dam Rain and Cumulative Gain - 18 - 18 September 2007

Then for the call price we find

C0 = P0t

∫ ∞

y∗
p(x) (xPtT −K)B(y∗/x) dx, (25)

where

B(u) =

∫ 1

u z
mt−1(1 − z)m(T−t)−1dz∫ 1

0 z
mt−1(1 − z)m(T−t)−1dz

(26)

is the complementary beta distribution function.

Note: the option price process {Cs} can also be calculated analogously to yield

Cs = Pst

∫ ∞

x=y∗
πs(x)(xPtT −K)B

(
y∗ − ξs
x− ξs

)
dx. (27)
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Options on assets having discrete cash flows

When the random variable XT takes discrete values {xi} with probability {pi}
the expression for the call option is given as follows:

C0 = P0τ

n∑
i=0

pi (xiPτT −K)B(y∗/xi)1{xi>y∗}. (28)

In particular, if XT is a binary variable, this reduces to

C0 = P0τ

[
p0 (x0PτT −K)B

(
y∗

x0

)
+ p1 (x1PτT −K)B

(
y∗

x1

)]
, (29)

where

y∗ =
θx1 − x0

θ − 1
(30)

and

θ =

[
p1(K − PτTx1)

p0(PτTx0 −K)

(
x1

x0

)1−mT] 1
m(T−τ)−1

. (31)
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Figure 5: Call price as a function of the strike K. The parameters are: r = 5%, m = 4.5, T = 1 year, τ = 0.3 year, and
S0 = 1.52196.
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Figure 6: Call price as a function of initial price S0. The parameters are: r = 5%, m = 4.5, T = 1 year, τ = 0.3 year,
and K = 1.35.
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Gamma-distributed cash flow

When the random variable XT is itself gamma distributed with parameter mT ,
the resulting value process {St} admits a particularly simple structure.

Specifically, we consider the case for which the a priori density function p(x) for
XT is given by

p(x) =
1

Γ[mT ]
X−mT

0 xmT−1e−x/X0, (32)

where X0 > 0 is a fixed parameter.

For the asset price process we find that

St = PtT
(
ξt +X0m(T − t)

)
. (33)

Therefore, the value process {St} in this example is a linear function of the
cumulative gains process {ξt}.
The price process for the Arrow-Debreu security on ξt is

Ast(y) = Pst
X

−m(t−s)
0

Γ[m(t− s)]
(y − ξs)

m(t−s)−1e−(y−ξs)/X0. (34)
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It follows that an insurance derivative with payout (St −K)+ has the price
process

Cs = PsT

[
Γ[m(t− s) + 1, K̃s]

Γ[m(t− s)]
− K̃s

Γ[m(t− s), K̃s]

Γ[m(t− s)]

]
, (35)

where we have defined

K̃s = P−1
tT K/X0 − ξs/X0 −m(T − t) (36)

and

Γ[a, z] =

∫ ∞

z

ua−1e−udu (37)

denotes the incomplete gamma integral.

The initial call price is

C0 = P0t

[
PtT

Γ[mt + 1, K̃]

Γ[mt]
− K̃

Γ[mt, K̃]

Γ[mt]

]
, (38)

where K̃ = P−1
tT K/X0 −mT
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